Relative entropy has been shown to provide a principled framework for the selection of coarse-grained potentials. Despite the intellectual appeal of it, its application has been limited by the fact that it requires the solution of an optimization problem with noisy gradients. When using deterministic optimization schemes, one is forced to either decrease the noise by adequate sampling or to resolve to ad hoc modifications in order to avoid instabilities. The former increases the computational demand of the method while the latter is of questionable validity. In order to address these issues and make relative entropy widely applicable, we propose alternative schemes for the solution of the optimization problem using stochastic algorithms.

1.
W.
Tschöp
,
K.
Kremer
,
J.
Batoulis
,
T.
Bürger
, and
O.
Hahn
, “
Simulation of polymer melts. I. Coarse-graining procedure for polycarbonates
,”
Acta Polym.
49
,
61
74
(
1998
).
2.
D.
Reith
,
M.
Pütz
, and
F.
Müller-Plathe
, “
Deriving effective mesoscale potentials from atomistic simulations
,”
J. Comput. Chem.
24
,
1624
1636
(
2003
).
3.
A. P.
Lyubartsev
and
A.
Laaksonen
, “
Calculation of effective interaction potentials from radial distribution functions: A reverse Monte Carlo approach
,”
Phys. Rev. E
52
,
3730
3737
(
1995
).
4.
A. K.
Soper
, “
Empirical potential Monte Carlo simulation of fluid structure
,”
Chem. Phys.
202
,
295
306
(
1996
).
5.
S.
Izvekov
and
G. A.
Voth
, “
Multiscale coarse graining of liquid-state systems
,”
J. Chem. Phys.
123
,
134105
(
2005
).
6.
W. G.
Noid
,
J.
Chu
,
G. S.
Ayton
, and
G. A.
Voth
, “
Multiscale coarse-graining and structural correlations: Connections to liquid-state theory
,”
J. Phys. Chem. B
111
,
4116
4127
(
2007
).
7.
M. S.
Shell
, “
The relative entropy is fundamental to multiscale and inverse thermodynamic problems
,”
J. Chem. Phys.
129
,
144108
(
2008
).
8.
A.
Chaimovich
and
M. S.
Shell
, “
Coarse-graining errors and numerical optimization using a relative entropy framework
,”
J. Chem. Phys.
134
,
094112
(
2011
).
9.
A.
Chaimovich
and
M. S.
Shell
, “
Anomalous waterlike behavior in spherically-symmetric water models optimized with the relative entropy
,”
Phys. Chem. Chem. Phys.
11
,
1901
1915
(
2009
).
10.
A.
Pritchard-Bell
and
M. S.
Shell
, “
Smoothing protein energy landscapes by integrating folding models with structure prediction
,”
Biophys. J.
101
,
2251
2259
(
2011
).
11.
S. P.
Carmichael
and
M. S.
Shell
, “
A new multiscale algorithm and its application to coarse-grained peptide models for self-assembly
,”
J. Phys. Chem. B
116
,
8383
8393
(
2012
).
12.
J. M.
Ortega
and
W. C.
Rheinboldt
,
Iterative Solution of Nonlinear Equations in Several Variables
(
Academic
,
New York
,
1970
).
13.
H.
Robbins
and
S.
Monro
, “
A stochastic approximation method
,”
Ann. Math. Stat.
22
,
400
407
(
1951
).
14.
J. C.
Spall
,
Introduction to Stochastic Search and Optimization
, 1st ed. (
Wiley
,
New York, NY
,
2003
).
15.
R. H.
Byrd
,
G. M.
Chin
,
W.
Neveitt
, and
J.
Nocedal
, “
On the use of stochastic Hessian information in optimization methods for machine learning
,”
SIAM J. Optim.
21
(
3
),
977
995
(
2011
).
16.
P. G.
Kusalik
and
I. M.
Svishchev
, “
The spatial structure in liquid water
,”
Science
265
,
1219
1221
(
1994
).
17.
H. J. C.
Berendsen
,
J. R.
Grigera
, and
T. P.
Straatsma
, “
The missing term in effective pair potentials
,”
J. Phys. Chem.
91
,
6269
6271
(
1987
).
18.
V.
Rühle
,
C.
Junghans
,
A.
Lukyanov
,
K.
Kremer
, and
D.
Andrienko
, “
Versatile object-oriented toolkit for coarse-graining applications
,”
J. Chem. Theory Comput.
5
,
3211
3223
(
2009
).
19.
B.
Hess
,
C.
Kutzner
,
D.
van der Spoel
, and
E.
Lindahl
, “
plbibsc-gromacs 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation
,”
J. Chem. Theory Comput.
4
,
435
447
(
2008
).
20.
H. J. C.
Berendsen
,
J. P. M.
Postma
,
W. F.
van Gunsteren
,
A.
DiNola
, and
J. R.
Haak
, “
Molecular dynamics with coupling to an external bath
,”
J. Chem. Phys.
81
,
3684
3690
(
1984
).
21.
W. F.
van Gunsteren
and
H. J. C.
Berendsen
, “
A leap-frog algorithm for stochastic dynamics
,”
Mol. Simul.
1
,
173
185
(
1988
).
22.
C.
de Boor
,
A Practical Guide to Splines
(
Springer-Verlag
,
1973
).
23.
M.
Galassi
,
J.
Davis
,
J.
Theiler
,
B.
Gough
,
G.
Jungman
,
P.
Alken
,
M.
Booth
, and
F.
Rossi
, GNU Scientific Library Reference Manual (3rd Ed.).
You do not currently have access to this content.