We introduce an extension to the weighted ensemble (WE) path sampling method to restrict sampling to a one-dimensional path through a high dimensional phase space. Our method, which is based on the finite-temperature string method, permits efficient sampling of both equilibrium and non-equilibrium systems. Sampling obtained from the WE method guides the adaptive refinement of a Voronoi tessellation of order parameter space, whose generating points, upon convergence, coincide with the principle reaction pathway. We demonstrate the application of this method to several simple, two-dimensional models of driven Brownian motion and to the conformational change of the nitrogen regulatory protein C receiver domain using an elastic network model. The simplicity of the two-dimensional models allows us to directly compare the efficiency of the WE method to conventional brute force simulations and other path sampling algorithms, while the example of protein conformational change demonstrates how the method can be used to efficiently study transitions in the space of many collective variables.

1.
C.
Dellago
,
P. G.
Bolhuis
,
F. S.
Csajka
, and
D.
Chandler
, “
Transition path sampling and the calculation of rate constants
,”
J. Chem. Phys.
108
,
1964
1977
(
1998
).
2.
T.
Woolf
, “
Path corrected functionals of stochastic trajectories: Towards relative free energy and reaction coordinate calculations
,”
Chem. Phys. Lett.
289
,
433
441
(
1998
).
3.
T. S.
van Erp
,
D.
Moroni
, and
P. G.
Bolhuis
, “
A novel path sampling method for the calculation of rate constants
,”
J. Chem. Phys.
118
,
7762
7774
(
2003
).
4.
A. K.
Faradjian
and
R.
Elber
, “
Computing time scales from reaction coordinates by milestoning
,”
J. Chem. Phys.
120
,
10880
10889
(
2004
).
5.
R. J.
Allen
,
P. B.
Warren
, and
P. R.
Ten Wolde
, “
Sampling rare switching events in biochemical networks
,”
Phys. Rev. Lett.
94
,
018104
(
2005
).
6.
A.
Warmflash
,
P.
Bhimalapuram
, and
A. R.
Dinner
, “
Umbrella sampling for nonequilibrium processes
,”
J. Chem. Phys.
127
,
154112
(
2007
).
7.
P. G.
Bolhuis
,
D.
Chandler
,
C.
Dellago
, and
P. L.
Geissler
, “
Transition path sampling: throwing ropes over rough mountain passes, in the dark
,”
Annu. Rev. Phys. Chem.
53
,
291
318
(
2002
).
8.
C.
Dellago
and
P. G.
Bolhuis
, “
Transition path sampling and other advanced simulation techniques for rare events
,” in
Advanced Computer Simulation Approaches for Soft Matter Sciences III
,
Advances in Polymer Science
Vol.
221
, edited by
C.
Holm
and
K.
Kremer
(
Springer
,
Berlin
,
2009
), pp.
167
233
.
9.
M. C.
Zwier
and
L. T.
Chong
, “
Reaching biological timescales with all-atom molecular dynamics simulations
,”
Curr. Opin. Pharmacol.
10
,
745
752
(
2010
).
10.
R.
Elber
and
M.
Karplus
, “
A method for determining reaction paths in large molecules: Application to myoglobin
,”
Chem. Phys. Lett.
139
,
375
380
(
1987
).
11.
S.
Fischer
and
M.
Karplus
, “
Conjugate peak refinement: An algorithm for finding reaction paths and accurate transition states in systems with many degrees of freedom
,”
Chem. Phys. Lett.
194
,
252
261
(
1992
).
12.
G.
Henkelman
and
H.
Jónsson
, “
Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points
,”
J. Chem. Phys.
113
,
9978
9985
(
2000
).
13.
W.
E
,
W.
Ren
, and
E.
Vanden-Eijnden
, “
String method for the study of rare events
,”
Phys. Rev. B
66
,
052301
(
2002
).
14.
L.
Maragliano
,
A.
Fischer
,
E.
Vanden-Eijnden
, and
G.
Ciccotti
, “
String method in collective variables: Minimum free energy paths and isocommittor surfaces
,”
J. Chem. Phys.
125
,
024106
(
2006
).
15.
W.
E
,
W.
Ren
, and
E.
Vanden-Eijnden
, “
Finite temperature string method for the study of rare events
,”
J. Phys. Chem. B
109
,
6688
6693
(
2005
).
16.
A. C.
Pan
,
D.
Sezer
, and
B.
Roux
, “
Finding transition pathways using the string method with swarms of trajectories
,”
J. Phys. Chem. B
112
,
3432
3440
(
2008
).
17.
A. C.
Pan
and
B.
Roux
, “
Building Markov state models along pathways to determine free energies and rates of transitions
,”
J. Chem. Phys.
129
,
064107
(
2008
).
18.
E.
Vanden-Eijnden
and
M.
Venturoli
, “
Revisiting the finite temperature string method for the calculation of reaction tubes and free energies
,”
J. Chem. Phys.
130
,
194103
(
2009
).
19.
A.
Dickson
,
A.
Warmflash
, and
A. R.
Dinner
, “
Nonequilibrium umbrella sampling in spaces of many order parameters
,”
J. Chem. Phys.
130
,
074104
(
2009
).
20.
J.
Rogal
,
W.
Lechner
,
J.
Juraszek
,
B.
Ensing
, and
P. G.
Bolhuis
, “
The reweighted path ensemble
,”
J. Chem. Phys.
133
,
174109
(
2010
).
21.
M. E.
Johnson
and
G.
Hummer
, “
Characterization of a dynamic string method for the construction of transition pathways in molecular reactions
,”
J. Phys. Chem. B
116
,
8573
8583
(
2012
).
22.
B. M.
Dickson
,
H.
Huang
, and
C. B.
Post
, “
Unrestrained computation of free energy along a path
,”
J. Phys. Chem. B
116
,
11046
11055
(
2012
).
23.
W.
Ren
,
E.
Vanden-Eijnden
,
P.
Maragakis
, and
W.
E
, “
Transition pathways in complex systems: Application of the finite-temperature string method to the alanine dipeptide
,”
J. Chem. Phys.
123
,
134109
(
2005
).
24.
T. F.
Miller
 III
,
E.
Vanden-Eijnden
, and
D.
Chandler
, “
Solvent coarse-graining and the string method applied to the hydrophobic collapse of a hydrated chain
,”
Proc. Natl. Acad. Sci. U.S.A.
104
,
14559
14564
(
2007
).
25.
V.
Ovchinnikov
,
M.
Cecchini
,
E.
Vanden-Eijnden
, and
M.
Karplus
, “
A conformational transition in the myosin VI converter contributes to the variable step size
,”
Biophys. J.
101
,
2436
2444
(
2011
).
26.
D.
Bhatt
and
D. M.
Zuckerman
, “
Heterogeneous path ensembles for conformational transitions in semi-atomistic models of adenylate kinase
,”
J. Chem. Theory Comput.
6
,
3527
3539
(
2010
).
27.
J. L.
Adelman
,
A. L.
Dale
,
M. C.
Zwier
,
D.
Bhatt
,
L. T.
Chong
,
D. M.
Zuckerman
, and
M.
Grabe
, “
Simulations of the alternating access mechanism of the sodium symporter Mhp1
,”
Biophys. J.
101
,
2399
2407
(
2011
).
28.
G. A.
Huber
and
S.
Kim
, “
Weighted-ensemble Brownian dynamics simulations for protein association reactions
,”
Biophys. J.
70
,
97
110
(
1996
).
29.
B. W.
Zhang
,
D.
Jasnow
, and
D. M.
Zuckerman
, “
Efficient and verified simulation of a path ensemble for conformational change in a united-residue model of calmodulin
,”
Proc. Natl. Acad. Sci. U.S.A.
104
,
18043
18048
(
2007
).
30.
B. W.
Zhang
,
D.
Jasnow
, and
D. M.
Zuckerman
, “
The ‘weighted ensemble’ path sampling method is statistically exact for a broad class of stochastic processes and binning procedures
,”
J. Chem. Phys.
132
,
054107
(
2010
).
31.
D.
Bhatt
,
B. W.
Zhang
, and
D. M.
Zuckerman
, “
Steady-state simulations using weighted ensemble path sampling
,”
J. Chem. Phys.
133
,
014110
(
2010
).
32.
A.
Rojnuckarin
,
D. R.
Livesay
, and
S.
Subramaniam
, “
Bimolecular reaction simulation using weighted ensemble Brownian dynamics and the University of Houston Brownian Dynamics program
,”
Biophys. J.
79
,
686
693
(
2000
).
33.
A.
Rojnuckarin
,
S.
Kim
, and
S.
Subramaniam
, “
Brownian dynamics simulations of protein folding: access to milliseconds time scale and beyond
,”
Proc. Natl. Acad. Sci. U.S.A.
95
,
4288
4292
(
1998
).
34.
M.
Zwier
,
J.
Kaus
, and
L.
Chong
, “
Efficient explicit-solvent molecular dynamics simulations of molecular association kinetics: Methane/methane, Na+/Cl, methane/benzene, and K+/18-crown-6 ether
,”
J. Chem. Theory Comput.
7
,
1189
1197
(
2011
).
35.
A.
Dickson
,
A.
Warmflash
, and
A. R.
Dinner
, “
Separating forward and backward pathways in nonequilibrium umbrella sampling
,”
J. Chem. Phys.
131
,
154104
(
2009
).
36.
F.
Zhu
and
G.
Hummer
, “
Pore opening and closing of a pentameric ligand-gated ion channel
,”
Proc. Natl. Acad. Sci. U.S.A.
107
,
19814
19819
(
2010
).
37.
S.
Lettieri
,
M. C.
Zwier
,
C. A.
Stringer
,
E.
Suarez
,
L. T.
Chong
, and
D. M.
Zuckerman
, “
Simultaneous computation of dynamical and equilibrium information using a weighted ensemble of trajectories
,” preprint arXiv:1210.3094 [physics.bio-ph] (
2012
).
38.
E.
Vanden-Eijnden
and
M.
Venturoli
, “
Exact rate calculations by trajectory parallelization and tilting
,”
J. Chem. Phys.
131
,
044120
(
2009
).
39.
A.
Dickson
,
M.
Maienschein-Cline
,
A.
Tovo-Dwyer
,
J.
Hammond
, and
A.
Dinner
, “
Flow-dependent unfolding and refolding of an RNA by nonequilibrium umbrella sampling
,”
J. Chem. Theory Comput.
7
,
2710
2720
(
2011
).
40.
See http://chong.chem.pitt.edu/WESTPA for the WESTPA software package.
41.
A.
Dickson
,
A.
Warmflash
, and
A. R.
Dinner
, “
Erratum: ‘Nonequilibrium umbrella sampling in spaces of many order parameters’ [J. Chem. Phys. 130, 074104 (2009)]
,”
J. Chem. Phys.
136
,
229901
(
2012
).
42.
A.
Dickson
,
A.
Warmflash
, and
A. R.
Dinner
, “
Erratum: ‘Separating forward and backward pathways in nonequilibrium umbrella sampling’ [J. Chem. Phys. 131, 154104 (2009)]
,”
J. Chem. Phys.
136
,
239901
(
2012
).
43.
A.
Damjanović
,
B.
García-Moreno E
, and
B. R.
Brooks
, “
Self-guided Langevin dynamics study of regulatory interactions in NtrC
,”
Proteins
76
,
1007
1019
(
2009
).
44.
M.
Lei
,
J.
Velos
,
A.
Gardino
,
A.
Kivenson
,
M.
Karplus
, and
D.
Kern
, “
Segmented transition pathway of the signaling protein nitrogen regulatory protein C
,”
J. Mol. Biol.
392
,
823
836
(
2009
).
45.
J. L.
Adelman
,
J. D.
Chodera
,
I.-F. W.
Kuo
,
T. F.
Miller
 III
, and
D.
Barsky
, “
The mechanical properties of PCNA: Implications for the loading and function of a DNA sliding clamp
,”
Biophys. J.
98
,
3062
3069
(
2010
).
46.
E.
Lyman
,
J.
Pfaendtner
, and
G. A.
Voth
, “
Systematic multiscale parameterization of heterogeneous elastic network models of proteins
,”
Biophys. J.
95
,
4183
4192
(
2008
).
47.
L.
Yang
,
G.
Song
,
A.
Carriquiry
, and
R. L.
Jernigan
, “
Close correspondence between the motions from principal component analysis of multiple HIV-1 protease structures and elastic network modes
,”
Structure
16
,
321
330
(
2008
).
48.
D.
Kern
,
B. F.
Volkman
,
P.
Luginbühl
,
M. J.
Nohaile
,
S.
Kustu
, and
D. E.
Wemmer
, “
Structure of a transiently phosphorylated switch in bacterial signal transduction
,”
Nature (London)
402
,
894
898
(
1999
).
49.
D. L.
Theobald
, “
Rapid calculation of RMSDs using a quaternion-based characteristic polynomial
,”
Acta Crystallogr. A
61
,
478
480
(
2005
).
50.
J.
Chodera
,
W.
Swope
,
J.
Pitera
,
C.
Seok
, and
K.
Dill
, “
Use of the weighted histogram analysis method for the analysis of simulated and parallel tempering simulations
,”
J. Chem. Theory Comput.
3
,
26
41
(
2007
).
51.
M. R.
Shirts
and
J. D.
Chodera
, “
Statistically optimal analysis of samples from multiple equilibrium states
,”
J. Chem. Phys.
129
,
124105
(
2008
).
52.
R.
Du
,
V.
Pande
,
A.
Grosberg
,
T.
Tanaka
, and
E.
Shakhnovich
, “
On the transition coordinate for protein folding
,”
J. Chem. Phys.
108
,
334
(
1998
).
53.
P.
Geissler
,
C.
Dellago
, and
D.
Chandler
, “
Kinetic pathways of ion pair dissociation in water
,”
J. Phys. Chem. B
103
,
3706
3710
(
1999
).
54.
F.
Noé
,
C.
Schütte
,
E.
Vanden-Eijnden
,
L.
Reich
, and
T. R.
Weikl
, “
Constructing the equilibrium ensemble of folding pathways from short off-equilibrium simulations
,”
Proc. Natl. Acad. Sci. U.S.A.
106
,
19011
19016
(
2009
).
55.
J.-H.
Prinz
,
H.
Wu
,
M.
Sarich
,
B.
Keller
,
M.
Senne
,
M.
Held
,
J. D.
Chodera
,
C.
Schütte
, and
F.
Noé
, “
Markov models of molecular kinetics: Generation and validation
,”
J. Chem. Phys.
134
,
174105
(
2011
).
56.
L.
Maragliano
,
E.
Vanden-Eijnden
, and
B.
Roux
, “
Free energy and kinetics of conformational transitions from Voronoi tessellated milestoning with restraining potentials
,”
J. Chem. Theory Comput.
5
,
2589
2594
(
2009
).
57.
B.
Peters
,
A.
Heyden
,
A. T.
Bell
, and
A.
Chakraborty
, “
A growing string method for determining transition states: Comparison to the nudged elastic band and string methods
,”
J. Chem. Phys.
120
,
7877
7886
(
2004
).
You do not currently have access to this content.