It is shown that diffusion-limited classical nucleation theory (CNT) can be recovered as a simple limit of the recently proposed dynamical theory of nucleation based on fluctuating hydrodynamics [J. F. Lutsko, J. Chem. Phys.136, 034509 (2012)] https://doi.org/10.1063/1.3677191. The same framework is also used to construct a more realistic theory in which clusters have finite interfacial width. When applied to the dilute solution/dense solution transition in globular proteins, it is found that the extension gives corrections to the nucleation rate even for the case of small supersaturations due to changes in the monomer distribution function and to the excess free energy. It is also found that the monomer attachment/detachment picture breaks down at high supersaturations corresponding to clusters smaller than about 100 molecules. The results also confirm the usual assumption that most important corrections to CNT can be achieved by means of improved estimates of the free energy barrier. The theory also illustrates two topics that have received considerable attention in the recent literature on nucleation: the importance sub-dominant corrections to the capillary model for the free energy and of the correct choice of the reaction coordinate.

1.
D.
Kashchiev
,
Nucleation: Basic Theory with Applications
(
Butterworth-Heinemann
,
Oxford
,
2000
).
2.
R.
Becker
and
W.
Döring
,
Ann. Phys.
2416
,
719
(
1935
).
3.
P.
Rien ten Wolde
and
D.
Frenkel
,
J. Chem. Phys.
109
,
9901
(
1998
).
4.
D. W.
Oxtoby
and
R.
Evans
,
J. Chem. Phys.
89
,
7521
(
1988
).
5.
J. F.
Lutsko
,
J. Chem. Phys.
129
,
244501
(
2008
).
6.
S.
Ghosh
and
S. K.
Ghosh
,
J. Chem. Phys.
134
,
024502
(
2011
).
7.
A. J.
Archer
and
R.
Evans
,
Mol. Phys.
109
,
2711
(
2011
).
8.
S.
Prestipino
,
A.
Laio
, and
E.
Tosatti
,
Phys. Rev. Lett.
108
,
225701
(
2012
).
9.
W.
Lechner
,
C.
Dellago
, and
P. G.
Bolhuis
,
Phys. Rev. Lett.
106
,
085701
(
2011
).
10.
J. F.
Lutsko
,
J. Chem. Phys.
135
,
161101
(
2011
).
11.
J. F.
Lutsko
,
J. Chem. Phys.
136
,
034509
(
2012
).
12.
J. F.
Lutsko
,
J. Chem. Phys.
136
,
134502
(
2012
).
13.
L.
Landau
and
E.
Lifshitz
,
Fluid Mechanics
(
Pergamon
,
New York
,
1975
).
14.
15.
C. W.
Gardiner
,
Handbook of Stochastic Methods
, 3rd ed. (
Springer
,
Berlin
,
2004
).
16.
P.
Hänggi
,
P.
Talkner
, and
M.
Borkovec
,
Rev. Mod. Phys.
62
,
251
(
1990
).
17.
E.
Lifshitz
and
L.
Pitaevskii
,
Physical Kinetics. Vol. 10: Course of Theoretical Physics
(
Elsevier
,
Amsterdam
,
2010
).
19.
J. S.
Langer
and
L. A.
Turski
,
Phys. Rev. A
8
,
3230
(
1973
).
20.
Y.
Saito
,
Statistical Physics of Crystal Growth
(
World Scientific
,
Singapore
,
1998
).
21.
J. F.
Lutsko
,
J. Chem. Phys.
134
,
164501
(
2011
).
22.
J. F.
Lutsko
,
J. Chem. Phys.
137
,
154903
(
2012
).
You do not currently have access to this content.