We report directional far-infrared emission from the υ = 0 vibrational levels of the 9, 10, 11, 9f, and 10f Rydberg states of NO in the gas phase. The emission around 28 and 19 μm from the 9f state was identified as the downward 9f → 8g and subsequent 8g → 7f cascade transitions, respectively. The emission around 38 and 40 μm from the 10f state was identified as the 10f → 9g and 10f → 9dσπ transition, respectively. Following the excitation of the 9, 10, and 11 states, the emission around 40, 60, and 83 μm was assigned as the 9 → 8, 10 → 9, and 11 → 10 transitions, respectively. In addition to these emission systems originated from the laser-prepared levels, we found the emission bands from the 8f, 9f, and 10f states which are located energetically above the 9, 10, and 11 states, respectively. This observation suggests that the upward 8f ← 9, 9f ← 10, and 10f ← 11 optical excitation occurs. Since the energy differences between nf and (n + 1) states correspond to the wavelength longer than 100 μm, the absorption of blackbody radiation is supposed to be essential for these upward transitions.

1.
G. I.
Peters
and
L.
Allen
,
J. Phys. A: Gen. Phys.
4
,
238
(
1971
).
2.
U.
Czarnetzki
and
H. F.
Döbele
,
Phys. Rev. A
44
,
7530
(
1991
).
3.
U.
Westblom
,
S.
Agrup
,
M.
Alden
,
H. M.
Hertz
, and
J. E. M.
Goldsmith
,
Appl. Phys. B
50
,
487
(
1990
).
4.
H.
Hasegawa
and
K.
Tsukiyama
,
Appl. Phys. B
63
,
311
(
1996
).
5.
Y.
Ogi
and
K.
Tsukiyama
,
Chem. Phys.
303
,
271
(
2004
).
6.
J. W.
Glessner
and
S. J.
Davis
,
J. Appl. Phys.
73
,
2672
(
1993
).
7.
J.
Ishii
,
K.
Uehara
, and
K.
Tsukiyama
,
J. Chem. Phys.
104
,
499
(
1996
).
8.
A.
Sugita
,
M.
Ikeda
, and
K.
Tsukiyama
,
J. Chem. Phys.
109
,
3386
(
1998
).
9.
Y.
Ogi
,
J.
Ando
,
M.
Nemoto
,
M.
Fujii
,
K.
Tono
, and
K.
Tsukiyama
,
Chem. Phys. Lett.
436
,
303
(
2007
).
10.
T. F.
Gallagher
,
Rydberg Atoms
(
Cambridge University Press
,
1994
).
11.
T. F.
Gallagher
and
W. E.
Cooke
,
Appl. Phys. Lett.
34
,
369
(
1979
).
12.
D. B.
Branden
,
T.
Juhasz
,
T.
Mahlokozera
,
C.
Vesa
,
R. O.
Wilson
,
M.
Zheng
,
A.
Kortyna
, and
D. A.
Tate
,
J. Phys. B
43
,
015002
(
2010
).
13.
I. I.
Beterov
,
I. I.
Ryabtsev
,
D. B.
Tretyakov
, and
V. M.
Entin
,
Phys. Rev. A
79
,
052504
(
2009
).
14.
L.
Suess
,
Y.
Liu
,
R.
Parthasarathy
, and
F. B.
Dunning
,
Chem. Phys. Lett.
376
,
376
(
2003
).
15.
D. S.
Tonner
,
D.
Thölmann
, and
T. B.
McMahon
,
Chem. Phys. Lett.
233
,
324
(
1995
).
16.
J.
Geng
,
T.
Kobayashi
, and
M.
Takami
,
Chem. Phys. Lett.
266
,
290
(
1997
).
17.
Y.
Ogi
,
M.
Takahashi
,
K.
Tsukiyama
, and
R.
Bersohn
,
Chem. Phys.
255
,
379
(
2000
).
18.
K.
Kaufmann
,
C.
Nager
, and
M.
Jungen
,
Chem. Phys.
95
,
385
(
1985
).
19.
E.
Miescher
,
Can. J. Phys.
54
,
2074
(
1976
).
20.
H. A.
Bethe
and
E. E.
Saloeter
,
Quantum Mechanics of One- and Two-Electron Atoms
(
Plenum Publishing Corporation
,
New York
,
1997
).
You do not currently have access to this content.