Two approximations in the Tamm-Dancoff density functional theory approach (TDA-DFT) to electronically excited states are proposed which allow routine computations for electronic ultraviolet (UV)- or circular dichroism (CD) spectra of molecules with 500–1000 atoms. Speed-ups compared to conventional time-dependent DFT (TD-DFT) treatments of about two to three orders of magnitude in the excited state part at only minor loss of accuracy are obtained. The method termed sTDA (“s” for simplified) employs atom-centered Löwdin-monopole based two-electron repulsion integrals with the asymptotically correct 1/R behavior and perturbative single excitation configuration selection. It is formulated generally for any standard global hybrid density functional with given Fock-exchange mixing parameter ax. The method performs well for two standard benchmark sets of vertical singlet-singlet excitations for values of ax in the range 0.2–0.6. The mean absolute deviations from reference data are only 0.2–0.3 eV and similar to those from standard TD-DFT. In three cases (two dyes and one polypeptide), good mutual agreement between the electronic spectra (up to 10–11 eV excitation energy) from the sTDA method and those from TD(A)-DFT is obtained. The computed UV- and CD-spectra of a few typical systems (e.g., C60, two transition metal complexes, [7]helicene, polyalanine, a supramolecular aggregate with 483 atoms and about 7000 basis functions) compare well with corresponding experimental data. The method is proposed together with medium-sized double- or triple-zeta type atomic-orbital basis sets as a quantum chemical tool to investigate the spectra of huge molecular systems at a reliable DFT level.

1.
E. M. E.
Casida
,
Recent Advances in Density Functional Methods
, edited by
D. P.
Chong
(
World Scientific
,
Singapore
,
1995
).
2.
E. K. U.
Gross
,
J. F.
Dobson
, and
M.
Petersilka
,
Density Functional Theory II
,
Springer Series in Topics in Current Chemistry
, Vol.
181
, edited by
R. F.
Nalewajski
(
Springer
,
Heidelberg
,
1996
).
3.
R.
Bauernschmitt
and
R.
Ahlrichs
,
Chem. Phys. Lett.
256
,
454
(
1996
).
4.
F.
Furche
,
J. Chem. Phys.
114
,
5982
5992
(
2001
).
5.
S. D.
Peyerimhoff
, “
Spectroscopy: Computational methods
,” in
Encyclopedia of Computational Chemistry
(
Wiley
,
New York
,
1998
), pp.
2646
2664
.
6.
S.
Grimme
,
Reviews in Computational Chemistry
, edited by
K. B.
Lipkowitz
and
D. B.
Boyd
(
Wiley-VCH
,
New York
,
2004
), Vol.
20
, pp.
153
218
.
7.
A.
Dreuw
and
M.
Head-Gordon
,
Chem. Rev.
105
,
4009
4037
(
2005
).
8.
P. H. P.
Harbach
and
A.
Dreuw
,
Modeling of Molecular Properties
, edited by
P.
Comba
(
Wiley-VCH
,
Weinheim
,
2011
).
9.
See also the special TD-DFT issue in
Phys. Chem. Chem. Phys.
11
(
22
) (
2009
).
10.
S. J. A.
van Gisbergen
,
J. G.
Snijders
, and
E. J.
Baerends
,
J. Chem. Phys.
103
,
9347
9354
(
1995
).
11.
V. P.
Osinga
,
S. J. A.
van Gisbergen
,
J. G.
Snijders
, and
E. J.
Baerends
,
J. Chem. Phys.
106
,
5091
5101
(
1997
).
12.
C.
Hättig
and
F.
Weigend
,
J. Chem. Phys.
113
,
5154
5161
(
2000
).
13.
D.
Kats
and
M.
Schütz
,
Z. Phys. Chem.
224
,
601
616
(
2010
).
14.
C. M.
Isborn
,
N.
Luehr
,
I. S.
Ufimtsev
, and
T. J.
Martinez
,
J. Chem. Theory Comput.
7
,
1814
1823
(
2011
).
15.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
5652
(
1993
).
16.
P. J.
Stephens
,
F. J.
Devlin
,
C. F.
Chabalowski
, and
M. J.
Frisch
,
J. Phys. Chem.
98
,
11623
11627
(
1994
).
17.
F.
Neese
,
J. Biol. Inorg. Chem.
11
,
702
711
(
2006
).
18.
D. J.
Tozer
,
R. D.
Amos
,
N. C.
Handy
, and
B. O.
Roos
,
Mol. Phys.
97
,
859
868
(
1999
).
19.
A.
Dreuw
,
J. L.
Weisman
, and
M.
Head-Gordon
,
J. Chem. Phys.
119
,
2943
(
2003
).
20.
D. J.
Tozer
,
J. Chem. Phys.
119
,
12697
12699
(
2003
).
21.
A.
Dreuw
and
M.
Head-Gordon
,
J. Am. Chem. Soc.
126
,
4007
4016
(
2004
).
22.
T.
Bally
and
G. N.
Sastry
,
J. Phys. Chem. A
101
,
7923
(
1997
).
23.
Y.
Zhang
and
W.
Yang
,
J. Chem. Phys.
109
,
2604
2608
(
1998
).
24.
O.
Gritsenko
,
B.
Ensing
,
P. R. T.
Schipper
, and
E. J.
Baerends
,
J. Phys. Chem. A
104
,
8558
8565
(
2000
).
25.
A. J.
Cohen
,
P.
Mori-Sanchez
, and
W.
Yang
,
Chem. Rev.
112
,
289
320
(
2012
).
26.
M. J. G.
Peach
,
P.
Benfield
,
T.
Helgaker
, and
D. J.
Tozer
,
J. Chem. Phys.
128
,
044118
(
2008
).
27.
A. D.
Becke
,
J. Chem. Phys.
98
,
1372
1377
(
1993
).
28.
M.
Dierksen
and
S.
Grimme
,
J. Phys. Chem. A
108
,
10225
10237
(
2004
).
29.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
,
J. Chem. Phys.
132
,
154104
(
2010
).
30.
F. D.
Sala
and
A.
Görling
,
Int. J. Quantum Chem.
91
,
131
138
(
2003
).
31.
Y.
Zhao
and
D. G.
Truhlar
,
J. Phys. Chem. A
110
,
13126
13130
(
2006
).
32.
D. J.
Tozer
and
N. C.
Handy
,
J. Chem. Phys.
109
,
10180
10189
(
1998
).
33.
J.
Neugebauer
,
O.
Gritsenko
, and
E. J.
Baerends
,
J. Chem. Phys.
124
,
214102
(
2006
).
34.
R.
van Leeuwen
and
E. J.
Baerends
,
Phys. Rev. A
49
,
2421
2431
(
1994
).
35.
P.
Gill
,
Mol. Phys.
88
,
1005
1010
(
1996
).
36.
H.
Iikura
,
T.
Tsuneda
,
T.
Yanai
, and
K.
Hirao
,
J. Chem. Phys.
115
,
3540
(
2001
).
37.
T.
Leininger
,
H.
Stoll
,
H. J.
Werner
, and
A.
Savin
,
Chem. Phys. Lett.
275
,
151
160
(
1997
).
38.
T.
Yanai
,
D.
Tew
, and
N.
Handy
,
Chem. Phys. Lett.
393
,
51
57
(
2004
).
39.
T.
Ziegler
,
M.
Krykunov
, and
J.
Cullen
,
J. Chem. Phys.
136
,
124107
(
2012
).
40.
L.
Kronik
,
T.
Stein
,
S.
Refaely-Abramson
, and
R.
Baer
,
J. Chem. Theory Comput.
8
,
1515
1531
(
2012
).
41.
A.
Schäfer
,
H.
Horn
, and
R.
Ahlrichs
,
J. Chem. Phys.
97
,
2571
2577
(
1992
).
42.
A.
Schäfer
,
C.
Huber
, and
R.
Ahlrichs
,
J. Chem. Phys.
100
,
5829
5835
(
1994
).
43.
M.
Krykunov
,
M. D.
Kundrat
, and
J.
Autschbach
,
J. Chem. Phys.
125
,
194110
(
2006
).
44.
M.
Krykunov
,
M.
Seth
,
T.
Ziegler
, and
J.
Autschbach
,
J. Chem. Phys.
127
,
244102
(
2007
).
45.
A.
Devarajan
,
A.
Gaenko
, and
J.
Autschbach
,
J. Chem. Phys.
130
,
194102
(
2009
).
46.
L. A.
Bartell
,
M. R.
Wall
, and
D.
Neuhauser
,
J. Chem. Phys.
132
,
234106
(
2010
).
47.
J.
Neugebauer
,
J. Chem. Phys.
126
,
134116
(
2007
).
48.
A. L.
Fetter
and
J. D.
Walecka
,
Quantum Theory of Many-Particle Systems
(
McGraw-Hill
,
New York
,
1971
).
49.
S.
Hirata
and
M.
Head-Gordon
,
Chem. Phys. Lett.
314
,
291
(
1999
).
50.
S.
Hirata
,
T. J.
Lee
, and
M.
Head-Gordon
,
J. Chem. Phys.
111
,
8904
8912
(
1999
).
51.
D.
Casanova
and
M.
Head-Gordon
,
J. Chem. Phys.
129
,
064104
(
2008
).
52.
M.
Roemelt
and
F.
Neese
,
J. Phys. Chem. A
117
,
3069
3083
(
2013
).
53.
J. S.
Sears
,
T.
Koerzdoerfer
,
C.-R.
Zhang
, and
J.-L.
Bredas
,
J. Chem. Phys.
135
,
151103
(
2011
).
54.
M.
Isegawa
and
D. G.
Truhlar
,
J. Chem. Phys.
138
,
134111
(
2013
).
55.
S.
Grimme
,
Chem. Phys. Lett.
259
,
128
(
1996
).
56.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
3868
(
1996
);
[PubMed]
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
78
,
1396
(
1997
) (Erratum).
57.
C.
Adamo
and
V.
Barone
,
J. Chem. Phys.
110
,
6158
6170
(
1999
).
58.
K.
Nishimoto
and
N.
Mataga
,
Z. Phys. Chem.
12
,
335
(
1957
).
59.
K.
Ohno
,
Theor. Chim. Acta
2
,
219
(
1964
).
60.
G.
Klopman
,
J. Am. Chem. Soc.
86
,
4450
(
1964
).
61.
D. C.
Ghosh
and
N.
Islam
,
Int. J. Quantum Chem.
110
,
1206
1213
(
2010
).
62.
R.
Pariser
,
J. Chem. Phys.
21
,
568
(
1953
).
63.
P.-O.
Løwdin
,
J. Chem. Phys.
18
,
365
(
1950
).
64.
B. I.
Dunlap
,
W. D.
Connolly
, and
J. R.
Sabin
,
J. Chem. Phys.
71
,
3396
(
1979
).
65.
F.
Weigend
and
M.
Häser
,
Theor. Chem. Acc.
97
,
331
340
(
1997
).
66.
T. A.
Niehaus
,
S.
Suhai
,
F. D.
Sala
,
P.
Lugli
,
M.
Elstner
,
G.
Seifert
, and
T.
Frauenheim
,
Phys. Rev. B
63
,
085108
(
2001
).
67.
R. S.
Mulliken
,
J. Chem. Phys.
23
,
1833
1840
(
1955
).
68.
J. D.
Thompson
,
J. D.
Xidos
,
T. M.
Sonbuchner
,
C. J.
Cramer
, and
D. G.
Truhlar
,
PhysChemComm
5
,
117
134
(
2002
).
69.
R. J.
Buenker
and
S. D.
Peyerimhoff
,
Theor. Chim. Acta
35
,
33
58
(
1974
).
70.
R. J.
Buenker
and
S. D.
Peyerimhoff
,
Theor. Chim. Acta
39
,
217
228
(
1975
).
71.
S.
Grimme
and
M.
Waletzke
,
J. Chem. Phys.
111
,
5645
(
1999
).
72.
F.
Neese
,
J. Chem. Phys.
119
,
9428
9443
(
2003
).
73.
R.
Ahlrichs
 et al, TURBOMOLE 6.4, Universität Karlsruhe,
2009
, see http://www.turbomole.com.
74.
R.
Ahlrichs
,
M.
Bär
,
M.
Häser
,
H.
Horn
, and
C.
Kölmel
,
Chem. Phys. Lett.
162
,
165
169
(
1989
).
75.
F.
Neese
, “ORCA: An ab initio, density functional and semiempirical program package,” Ver. 2.9, Rev. 0, Max Planck Institute for Bioinorganic Chemistry, Germany,
2011
.
76.
F.
Neese
,
WIREs Comput. Mol. Sci.
2
,
73
78
(
2012
).
77.
O.
Vahtras
,
J.
Almlöf
, and
M. W.
Feyereisen
,
Chem. Phys. Lett.
213
,
514
518
(
1993
).
78.
K.
Eichkorn
,
F.
Weigend
,
O.
Treutler
, and
R.
Ahlrichs
,
Theor. Chem. Acc.
97
,
119
124
(
1997
).
79.
F.
Weigend
,
Phys. Chem. Chem. Phys.
8
,
1057
(
2006
).
80.
J.
Tao
,
J. P.
Perdew
,
V. N.
Staroverov
, and
G. E.
Scuseria
,
Phys. Rev. Lett.
91
,
146401
(
2003
).
81.
S.
Grimme
,
S.
Ehrlich
, and
L.
Goerigk
,
J. Comput. Chem.
32
,
1456
1465
(
2011
).
82.
F.
Weigend
and
R.
Ahlrichs
,
Phys. Chem. Chem. Phys.
7
,
3297
3305
(
2005
).
83.
S.
Grimme
and
S. D.
Peyerimhoff
,
The Role of Rydberg States in Spectroscopy and Reactivity
, edited by
C.
Sandorfy
(
Kluwer Academic Publishers
,
Dordrecht
,
1999
), pp.
93
119
.
84.
R. A.
Kendall
,
T. H.
Dunning
, and
R. J.
Harrison
,
J. Chem. Phys.
96
,
6796
6806
(
1992
).
85.
M. F.
Peintinger
,
D. V.
Oliveira
, and
T.
Bredow
,
J. Comput. Chem.
34
,
451
459
(
2013
).
86.
S.
Grimme
,
J. Phys. Chem. A
109
,
3067
3077
(
2005
).
87.
F.
Furche
and
D.
Rappoport
,
Theoretical and Computational Chemistry
, edited by
M.
Olivucci
(
Elsevier
,
Amsterdam
,
2005
), Vol.
16
, p.
93
.
88.
M.
Parac
and
S.
Grimme
,
J. Phys. Chem. A
106
,
6844
6850
(
2002
).
89.
S.
Grimme
and
F.
Neese
,
J. Chem. Phys.
127
,
154116
(
2007
).
90.
M.
Schreiber
,
M. R.
Silva-Junior
,
S. P. A.
Sauer
, and
W.
Thiel
,
J. Chem. Phys.
128
,
134110
(
2008
).
91.
L.
Goerigk
and
S.
Grimme
,
J. Chem. Phys.
132
,
184103
(
2010
).
92.
D.
Jacquemin
,
E. A.
Perpete
,
G.
Scalmani
,
M. J.
Frisch
,
R.
Kobayashi
, and
C.
Adamo
,
J. Chem. Phys.
126
,
144105
(
2007
).
93.
B. M.
Wong
,
M.
Piacenza
, and
S. D.
Sala
,
Phys. Chem. Chem. Phys.
11
,
4498
4508
(
2009
).
94.
S. S.
Leang
,
F.
Zahariev
, and
M. S.
Gordon
,
J. Chem. Phys.
136
,
104101
(
2012
).
95.
M.
Krykunov
,
S.
Grimme
, and
T.
Ziegler
,
J. Chem. Theory Comput.
8
,
4434
4440
(
2012
).
96.
F.
Evers
,
J.
Giraud-Girard
,
S.
Grimme
,
J.
Manz
,
C.
Monte
,
M.
Oppel
,
W.
Rettig
,
P.
Saalfrank
, and
P.
Zimmermann
,
J. Phys. Chem. A
105
,
2911
2924
(
2001
).
97.
M.
Merchan
,
B. O.
Ross
,
R.
McDiarmid
, and
X.
Xing
,
J. Chem. Phys.
104
,
1791
(
1996
).
98.
R. S.
Mulliken
,
J. Am. Chem. Soc.
74
,
811
824
(
1952
).
99.
S.
Leach
,
M.
Vervloet
,
A.
Despres
,
E.
Breheret
,
J. P.
Hare
,
T. J.
Dennis
,
H. W.
Kroto
,
R.
Taylor
, and
D. R. M.
Walton
,
Chem. Phys.
160
,
451
466
(
1992
).
100.
S.
Grimme
and
M.
Parac
,
ChemPhysChem
4
,
292
(
2003
).
101.
H.
Yersin
,
W.
Humbs
, and
J.
Strasser
,
Coord. Chem. Rev.
159
,
325
358
(
1997
).
102.
H. B.
Gray
,
Y. S.
Sohn
, and
N.
Hendrickson
,
J. Am. Chem. Soc.
93
,
3603
(
1971
).
103.
T. D.
Crawford
,
Theor. Chem. Acc.
115
,
227
(
2006
).
104.
L.
Goerigk
,
H.
Kruse
, and
S.
Grimme
,
Comprehensive Chiroptical Spectroscopy, Volume 1: Instrumentation, Methodologies and Theoretical Simulations
, edited by
K. N. N.
Berova
,
P. L.
Polavarapu
, and
R. W.
Woody
(
Wiley
,
New York
,
2012
), pp.
643
673
.
105.
I.
Warnke
and
F.
Furche
,
WIREs Comput. Mol. Sci.
2
,
150
166
(
2012
).
106.
F.
Furche
,
R.
Ahlrichs
,
C.
Wachsmann
,
E.
Weber
,
A.
Sobanski
,
F.
Vögtle
, and
S.
Grimme
,
J. Am. Chem. Soc.
122
,
1717
(
2000
).
107.
W. S.
Brickell
,
A.
Brown
,
C. M.
Kemp
, and
S. F.
Mason
,
J. Chem. Soc. A
1971
,
756
.
108.
R. W.
Woody
,
Comprehensive Chiroptical Spectroscopy, Volume 2: Applications in Stereochemical Analysis of Synthetic Compounds
, edited by
K. N. N.
Berova
,
P. L.
Polavarapu
, and
R. W.
Woody
(
Wiley
,
New York
,
2012
), pp.
475
497
.
109.
C.
Toniolo
,
F.
Formaggio
, and
R. W.
Woody
,
Comprehensive Chiroptical Spectroscopy, Volume 2: Applications in Stereochemical Analysis of Synthetic Compounds
, edited by
K. N. N.
Berova
,
P. L.
Polavarapu
, and
R. W.
Woody
(
Wiley
,
New York
,
2012
), pp.
499
574
.
110.
A.
Klamt
and
G.
Schüürmann
,
J. Chem. Soc., Perkin Trans. 2
1993
,
799
805
.
111.
K. E.
Gilbert
,
PCmodel 9.1
(
Serena Software
,
Bloomington
,
2005
).
112.
W. C.
Johnson
and
I.
Tinoco
,
J. Am. Chem. Soc.
94
,
4389
4390
(
1972
).
113.
B. A.
Wallace
,
K.
Gekko
,
S. V.
Hoffmann
,
Y.
Lin
,
J. C.
Sutherland
,
Y.
Tao
,
F.
Wien
, and
R. W.
Janes
,
Nucl. Instrum. Methods Phys. Res. A
649
,
177
178
(
2011
).
114.
A.
Lützen
, private communication (
2013
), a complete analysis of the spectra of these and similar compounds including stereo-isomers will be published elsewhere.
115.
J.
Bunzen
,
T. B. G.
Bringmann
, and
A.
Lützen
,
J. Am. Chem. Soc.
131
,
3621
3630
(
2009
).
116.
Test calculations also for various stereo-isomers of this compound with the semi-empirical ZINDO/S-CIS method as implemented in the ORCA code yielded typically about 300–400 states in the considered wavelengths range.
You do not currently have access to this content.