Hybrid molecular dynamics (MD) simulations, in which the forces acting on the atoms are calculated by grid-based density functional theory (DFT) for a solute molecule and by a polarizable molecular mechanics (PMM) force field for a large solvent environment composed of several 103–105 molecules, pose a challenge. A corresponding computational approach should guarantee energy conservation, exclude artificial distortions of the electron density at the interface between the DFT and PMM fragments, and should treat the long-range electrostatic interactions within the hybrid simulation system in a linearly scaling fashion. Here we describe a corresponding Hamiltonian DFT/(P)MM implementation, which accounts for inducible atomic dipoles of a PMM environment in a joint DFT/PMM self-consistency iteration. The long-range parts of the electrostatics are treated by hierarchically nested fast multipole expansions up to a maximum distance dictated by the minimum image convention of toroidal boundary conditions and, beyond that distance, by a reaction field approach such that the computation scales linearly with the number of PMM atoms. Short-range over-polarization artifacts are excluded by using Gaussian inducible dipoles throughout the system and Gaussian partial charges in the PMM region close to the DFT fragment. The Hamiltonian character, the stability, and efficiency of the implementation are investigated by hybrid DFT/PMM-MD simulations treating one molecule of the water dimer and of bulk water by DFT and the respective remainder by PMM.
Skip Nav Destination
Article navigation
28 June 2013
Research Article|
June 25 2013
Coupling density functional theory to polarizable force fields for efficient and accurate Hamiltonian molecular dynamics simulations
Magnus Schwörer;
Magnus Schwörer
Lehrstuhl für BioMolekulare Optik,
Ludwig–Maximilians Universität München
, Oettingenstr. 67, 80538 München, Germany
Search for other works by this author on:
Benedikt Breitenfeld;
Benedikt Breitenfeld
Lehrstuhl für BioMolekulare Optik,
Ludwig–Maximilians Universität München
, Oettingenstr. 67, 80538 München, Germany
Search for other works by this author on:
Philipp Tröster;
Philipp Tröster
Lehrstuhl für BioMolekulare Optik,
Ludwig–Maximilians Universität München
, Oettingenstr. 67, 80538 München, Germany
Search for other works by this author on:
Sebastian Bauer;
Sebastian Bauer
Lehrstuhl für BioMolekulare Optik,
Ludwig–Maximilians Universität München
, Oettingenstr. 67, 80538 München, Germany
Search for other works by this author on:
Konstantin Lorenzen;
Konstantin Lorenzen
Lehrstuhl für BioMolekulare Optik,
Ludwig–Maximilians Universität München
, Oettingenstr. 67, 80538 München, Germany
Search for other works by this author on:
Paul Tavan;
Paul Tavan
Lehrstuhl für BioMolekulare Optik,
Ludwig–Maximilians Universität München
, Oettingenstr. 67, 80538 München, Germany
Search for other works by this author on:
Gerald Mathias
Gerald Mathias
a)
Lehrstuhl für BioMolekulare Optik,
Ludwig–Maximilians Universität München
, Oettingenstr. 67, 80538 München, Germany
Search for other works by this author on:
a)
Electronic mail: gerald.mathias@physik.uni-muenchen.de
J. Chem. Phys. 138, 244103 (2013)
Article history
Received:
April 05 2013
Accepted:
June 03 2013
Citation
Magnus Schwörer, Benedikt Breitenfeld, Philipp Tröster, Sebastian Bauer, Konstantin Lorenzen, Paul Tavan, Gerald Mathias; Coupling density functional theory to polarizable force fields for efficient and accurate Hamiltonian molecular dynamics simulations. J. Chem. Phys. 28 June 2013; 138 (24): 244103. https://doi.org/10.1063/1.4811292
Download citation file:
Sign in
Don't already have an account? Register
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Sign in via your Institution
Sign in via your InstitutionPay-Per-View Access
$40.00