Hybrid molecular dynamics (MD) simulations, in which the forces acting on the atoms are calculated by grid-based density functional theory (DFT) for a solute molecule and by a polarizable molecular mechanics (PMM) force field for a large solvent environment composed of several 103–105 molecules, pose a challenge. A corresponding computational approach should guarantee energy conservation, exclude artificial distortions of the electron density at the interface between the DFT and PMM fragments, and should treat the long-range electrostatic interactions within the hybrid simulation system in a linearly scaling fashion. Here we describe a corresponding Hamiltonian DFT/(P)MM implementation, which accounts for inducible atomic dipoles of a PMM environment in a joint DFT/PMM self-consistency iteration. The long-range parts of the electrostatics are treated by hierarchically nested fast multipole expansions up to a maximum distance dictated by the minimum image convention of toroidal boundary conditions and, beyond that distance, by a reaction field approach such that the computation scales linearly with the number of PMM atoms. Short-range over-polarization artifacts are excluded by using Gaussian inducible dipoles throughout the system and Gaussian partial charges in the PMM region close to the DFT fragment. The Hamiltonian character, the stability, and efficiency of the implementation are investigated by hybrid DFT/PMM-MD simulations treating one molecule of the water dimer and of bulk water by DFT and the respective remainder by PMM.

1.
A.
Warshel
and
M.
Levitt
,
J. Mol. Biol.
103
,
227
(
1976
).
2.
H. M.
Senn
and
W.
Thiel
,
Angew. Chem., Int. Ed.
48
,
1198
(
2009
).
3.
W. D.
Cornell
,
P.
Cieplak
,
C. I.
Bayly
,
I. R.
Gould
,
K. M.
Merz
,
D. M.
Ferguson
,
D. C.
Spellmeyer
,
T.
Fox
,
J. W.
Caldwell
, and
P. A.
Kollman
,
J. Am. Chem. Soc.
117
,
5179
(
1995
).
4.
A.
MacKerell
,
D.
Bashford
,
M.
Bellott
,
R.
Dunbrack
,
J.
Evanseck
,
M.
Field
,
S.
Fischer
,
J.
Gao
,
H.
Guo
,
S.
Ha
,
D.
Joseph-McCarthy
,
L.
Kuchnir
,
K.
Kuczera
,
F.
Lau
,
C.
Mattos
,
S.
Michnick
,
T.
Ngo
,
D.
Nguven
,
B.
Prodhom
,
W.
Reiher
,
B.
Roux
,
M.
Schlenkrich
,
J.
Smith
,
R.
Stote
,
J.
Straub
,
M.
Watanabe
,
J.
Wiorkiewicz-Kuczera
,
D.
Yin
, and
M.
Karplus
,
J. Phys. Chem. B
102
,
3586
(
1998
).
5.
G. A.
Kaminski
,
R. A.
Friesner
,
J.
Tirado-Rives
, and
W. L.
Jorgensen
,
J. Phys. Chem. B
105
,
6474
(
2001
).
6.
C.
Oostenbrink
,
A.
Villa
,
A. E.
Mark
, and
W. F.
Van Gunsteren
,
J. Comput. Chem.
25
,
1656
(
2004
).
7.
P.
Tavan
,
H.
Carstens
, and
G.
Mathias
, “
Molecular dynamics simulations of proteins and peptides: Problems, achievements, and perspectives
,” in
Protein Folding Handbook
, edited by
J.
Buchner
and
T.
Kiefhaber
(
Wiley-VCH
,
Weinheim
,
2005
), Vol.
1
, pp.
1170
1195
.
8.
M. A.
Thompson
and
G. K.
Schenter
,
J. Phys. Chem.
99
,
6374
(
1995
).
9.
M. A.
Thompson
,
J. Phys. Chem.
100
,
14492
(
1996
).
10.
D.
Bakowies
and
W.
Thiel
,
J. Phys. Chem.
100
,
10580
(
1996
).
12.
D. P.
Geerke
,
S.
Thiel
,
W.
Thiel
, and
W. F.
van Gunsteren
,
J. Chem. Theory Comput.
3
,
1499
(
2007
).
13.
P.
Hohenberg
and
W.
Kohn
,
Phys. Rev.
136
,
B864
(
1964
).
14.
W.
Kohn
and
L. J.
Sham
,
Phys. Rev.
140
,
A1133
(
1965
).
15.
U. C.
Singh
and
P. A.
Kollman
,
J. Comput. Chem.
7
,
718
(
1986
).
16.
G.
Jansen
,
F.
Colonna
, and
J. G.
Ángyán
,
Int. J. Quantum Chem.
58
,
251
(
1996
).
17.
M. J.
Field
,
Mol. Phys.
91
,
835
(
1997
).
18.
I. H.
Hillier
,
J. Mol. Struct.: THEOCHEM
463
,
45
(
1999
).
19.
H.
Houjou
,
Y.
Inoue
, and
M.
Sakurai
,
J. Phys. Chem. B
105
,
867
(
2001
).
20.
L.
Jensen
,
P. T.
van Duijnen
, and
J. G.
Snijders
,
J. Chem. Phys.
118
,
514
(
2003
).
21.
C. J. R.
Illingworth
,
S. R.
Gooding
,
P. J.
Winn
,
G. A.
Jones
,
G. G.
Ferenczy
, and
C. A.
Reynolds
,
J. Phys. Chem. A
110
,
6487
(
2006
).
22.
M.
Wanko
,
M.
Hoffmann
,
J.
Fraehmcke
,
T.
Frauenheim
, and
M.
Elstner
,
J. Phys. Chem. B
112
,
11468
(
2008
).
23.
C.
Curutchet
,
A.
Muñoz-Losa
,
S.
Monti
,
J.
Kongsted
,
G. D.
Scholes
, and
B.
Mennucci
,
J. Chem. Theory Comput.
5
,
1838
(
2009
).
24.
R. A.
Bryce
,
M. A.
Vincent
,
N. O. J.
Malcolm
,
I. H.
Hillier
, and
N. A.
Burton
,
J. Chem. Phys.
109
,
3077
(
1998
).
25.
M. S.
Gordon
,
M. A.
Freitag
,
P.
Bandyopadhyay
,
J. H.
Jensen
,
V.
Kairys
, and
W. J.
Stevens
,
J. Phys. Chem. A
105
,
293
(
2001
).
26.
M.
Dupuis
,
M.
Aida
,
Y.
Kawashima
, and
K.
Hirao
,
J. Chem. Phys.
117
,
1242
(
2002
).
27.
H.
Li
and
M. S.
Gordon
,
J. Chem. Phys.
126
,
124112
(
2007
).
28.
P. K.
Biswas
and
V.
Gogonea
,
J. Chem. Phys.
129
,
154108
(
2008
).
29.
F.
Lipparini
,
C.
Cappelli
,
G.
Scalmani
,
N.
De Mitri
, and
V.
Barone
,
J. Chem. Theory Comput.
8
,
4270
(
2012
).
30.
Z.
Lu
and
Y.
Zhang
,
J. Chem. Theory Comput.
4
,
1237
(
2008
).
31.
E.
Boulanger
and
W.
Thiel
,
J. Chem. Theory Comput.
8
,
4527
(
2012
).
32.
K. A.
Maerzke
,
G.
Murdachaew
,
C. J.
Mundy
,
G. K.
Schenter
, and
J. I.
Siepmann
,
J. Phys. Chem. A
113
,
2075
(
2009
).
33.
G.
Murdachaew
,
C. J.
Mundy
, and
G. K.
Schenter
,
J. Chem. Phys.
132
,
164102
(
2010
).
34.
M.
Eichinger
,
P.
Tavan
,
J.
Hutter
, and
M.
Parrinello
,
J. Chem. Phys.
110
,
10452
(
1999
).
35.
M.
Nonella
,
G.
Mathias
, and
P.
Tavan
,
J. Phys. Chem. A
107
,
8638
(
2003
).
36.
M.
Schmitz
and
P.
Tavan
,
J. Chem. Phys.
121
,
12247
(
2004
).
37.
V.
Schultheis
,
R.
Reichold
,
B.
Schropp
, and
P.
Tavan
,
J. Phys. Chem. B
112
,
12217
(
2008
).
38.
A.
Laio
,
J.
VandeVondele
, and
U.
Rothlisberger
,
J. Chem. Phys.
116
,
6941
(
2002
).
39.
T.
Laino
,
F.
Mohamed
,
A.
Laio
, and
M.
Parrinello
,
J. Chem. Theory Comput.
1
,
1176
(
2005
).
40.
G.
Babitzki
,
R.
Denschlag
, and
P.
Tavan
,
J. Phys. Chem. B
113
,
10483
(
2009
).
41.
G.
Babitzki
,
G.
Mathias
, and
P.
Tavan
,
J. Phys. Chem. B
113
,
10496
(
2009
).
42.
B.
Rieff
,
S.
Bauer
,
G.
Mathias
, and
P.
Tavan
,
J. Phys. Chem. B
115
,
11239
(
2011
).
43.
M.
Nonella
,
G.
Mathias
,
M.
Eichinger
, and
P.
Tavan
,
J. Phys. Chem. B
107
,
316
(
2003
).
44.
M.
Klähn
,
G.
Mathias
,
C.
Kotting
,
J.
Schlitter
,
M.
Nonella
,
K.
Gerwert
, and
P.
Tavan
,
J. Phys. Chem. A
108
,
6186
(
2004
).
45.
W. L.
Jorgensen
,
J.
Chandrasekhar
,
J. D.
Madura
,
R. W.
Impey
, and
M. L.
Klein
,
J. Chem. Phys.
79
,
926
(
1983
).
46.
J.
VandeVondele
,
P.
Tröster
,
P.
Tavan
, and
G.
Mathias
,
J. Phys. Chem. A
116
,
2466
(
2012
).
47.
K.
Lorenzen
,
M.
Schwörer
,
P.
Tröster
,
S.
Mates
, and
P.
Tavan
,
J. Chem. Theory Comput.
8
,
3628
(
2012
).
48.
J.
Hutter
,
A.
Alavi
,
T.
Deutsch
,
M.
Bernasconi
,
S.
Goedecker
,
D.
Marx
,
M.
Tuckerman
, and
M.
Parrinello
, CPMD: Car–Parinello Molecular Dynamics, Version 3.15.1, © IBM Corp, 1990–2008 and MPI für Festkörperforschung Stuttgart, 1997–2001, see www.cpmd.org.
49.
J.
Applequist
,
J. R.
Carl
, and
K.-K.
Fung
,
J. Am. Chem. Soc.
94
,
2952
(
1972
).
50.
P.
Ahlström
,
A.
Wallquist
,
S.
Engström
, and
B.
Jönsson
,
Mol. Phys.
68
,
563
(
1989
).
51.
P. E.
Lopes
,
B.
Roux
, and
A. D.
MacKerell
 Jr.
,
Theor. Chem. Acc.
124
,
11
(
2009
).
52.
B. T.
Thole
,
Chem. Phys.
59
,
341
(
1981
).
53.
D.
Elking
,
T.
Darden
, and
R. J.
Woods
,
J. Comput. Chem.
28
,
1261
(
2007
).
54.
S.
Russell
and
A.
Warshel
,
J. Mol. Biol.
185
,
389
(
1985
).
55.
D. V.
Belle
,
I.
Couplet
,
M.
Prevost
, and
S. J.
Wodak
,
J. Mol. Biol.
198
,
721
(
1987
).
56.
P. K.
Biswas
and
V.
Gogonea
,
J. Chem. Phys.
123
,
164114
(
2005
).
57.
M. P.
Allen
and
D.
Tildesley
, in
Computer Simulations of Liquids
(
Clarendon
,
Oxford
,
1987
), Chap. 1.5.2, pp.
24
27
.
58.
C.
Niedermeier
and
P.
Tavan
,
J. Chem. Phys.
101
,
734
(
1994
).
59.
C.
Niedermeier
and
P.
Tavan
,
Mol. Simul.
17
,
57
(
1996
).
60.
G.
Mathias
,
B.
Egwolf
,
M.
Nonella
, and
P.
Tavan
,
J. Chem. Phys.
118
,
10847
(
2003
).
61.
A. A.
Appel
,
SIAM (Soc. Ind. Appl. Math.) J. Sci. Stat. Comput.
6
,
85
(
1985
).
62.
J.
Barnes
and
P.
Hut
,
Nature (London)
324
,
446
(
1986
).
63.
L.
Greengard
and
V.
Rokhlin
,
J. Comput. Phys.
73
,
325
(
1987
).
64.
W.
Dehnen
,
J. Comput. Phys.
179
,
27
(
2002
).
65.
M.
Eichinger
,
H.
Grubmüller
,
H.
Heller
, and
P.
Tavan
,
J. Comput. Chem.
18
,
1729
(
1997
).
66.
D.
Carfi
,
AAPP Phys. Math. Nat. Sci.
88
,
C1A1001004
(
2010
).
67.
A. D.
Buckingham
,
Adv. Chem. Phys.
12
,
107
(
1967
).
68.
K.
Hinsen
and
B. U.
Felderhof
,
J. Math. Phys.
33
,
3731
(
1992
).
69.
W. H.
Press
,
B. P.
Flannery
,
S. A.
Teukolsky
, and
W. T.
Vetterling
,
Numerical Recipes in C
(
Cambridge University Press
,
Cambridge
,
1988
), Chap. 3.2, pp.
118
120
.
70.
P.
Pulay
,
Chem. Phys. Lett.
73
,
393
(
1980
).
71.
J.
Hutter
,
H. P.
Lüthi
, and
M.
Parrinello
,
Comput. Mater. Sci.
2
,
244
(
1994
).
72.
L.
Verlet
,
Phys. Rev.
159
,
98
(
1967
).
73.
V.
Kräutler
,
W. F.
van Gunsteren
, and
P.
Hünenberger
,
J. Comput. Chem.
22
,
501
(
2001
).
74.
A. D.
Becke
,
Phys. Rev. A
38
,
3098
(
1988
).
75.
J.
Perdew
and
W.
Yue
,
Phys. Rev. B
33
,
8800
(
1986
).
76.
N.
Troullier
and
J. L.
Martins
,
Phys. Rev. B
43
,
1993
(
1991
).
77.
W. S.
Benedict
,
N.
Gailar
, and
E. K.
Plyler
,
J. Chem. Phys.
24
,
1139
(
1956
).
78.
K.
Ichikawa
,
Y.
Kameda
,
T.
Yamaguchi
,
H.
Wakita
, and
M.
Misawa
,
Mol. Phys.
73
,
79
(
1991
).
79.
W. F.
Murphy
,
J. Chem. Phys.
67
,
5877
(
1977
).
80.
T.
Dyke
and
J.
Muenter
,
J. Chem. Phys.
59
,
3125
(
1973
).
81.
R. A.
Buckingham
and
J.
Corner
,
Proc. R. Soc. London, Ser. A
189
,
118
(
1947
).
82.
G.
Kell
,
J. Chem. Eng. Data
12
,
66
(
1967
).
83.
G.
Bussi
,
D.
Donadio
, and
M.
Parrinello
,
J. Chem. Phys.
126
,
014101
(
2007
).
84.
J. L. F.
Abascal
and
C.
Vega
,
J. Chem. Phys.
123
,
234505
(
2005
).
85.
M. E.
Tuckerman
,
Statistical Mechanics: Theory and Molecular Simulation
, 1st ed. (
Oxford University Press
,
New York
,
2010
), Chap. 3.13, pp.
121
124
.
86.
See supplementary material at http://dx.doi.org/10.1063/1.4811292 for a total of four figures (S9– S12) and three equations (S39– S41) as additional material to the results of the (V) test simulations, on five pages in three sections.
87.
J.
VandeVondele
,
M.
Krack
,
F.
Mohamed
,
M.
Parrinello
,
T.
Chassaing
, and
J.
Hutter
,
Comput. Phys. Commun.
167
,
103
(
2005
).
88.
G.
Mathias
and
M. D.
Baer
,
J. Chem. Theory Comput.
7
,
2028
(
2011
).
89.
J.
Hutter
and
A.
Curioni
,
Parallel Comput.
31
,
1
(
2005
).
90.
P.
Tröster
,
K.
Lorenzen
,
M.
Schwörer
, and
P.
Tavan
, “
Polarizable water models from mixed computational and empirical optimization
J. Phys. Chem. B
(to be published).

Supplementary Material

You do not currently have access to this content.