The Born-Oppenheimer approximation is a basic approximation in molecular science. In this approximation, the total molecular wavefunction is written as a product of an electronic and a nuclear wavefunction. Hunter [Int. J. Quantum Chem.9, 237 (1975)] https://doi.org/10.1002/qua.560090205 has argued that the exact total wavefunction can also be factorized as such a product. In the present work, a variational principle is introduced which shows explicitly that the total wavefunction can be exactly written as such a product. To this end, a different electronic Hamiltonian has to be defined. The Schrödinger equation for the electronic wavefunction follows from the variational ansatz and is presented. As in the Born-Oppenheimer approximation, the nuclear motion is shown to proceed in a potential which is the electronic energy. In contrast to the Born-Oppenheimer approximation, the separation of the center of mass can be carried out exactly. The electronic Hamiltonian and the equation of motion of the nuclei resulting after the exact separation of the center of mass motion are explicitly given. A simple exactly solvable model is used to illustrate some aspects of the theory.

1.
M.
Born
and
R.
Oppenheimer
,
Ann. Phys.
389
,
457
(
1927
).
2.
M.
Born
and
K.
Huang
,
Dynamical Theory of Crystal Lattices
(
Oxford University Press
,
New York
,
1954
).
3.
B. T.
Sutcliffe
and
R. G.
Woolley
,
J. Chem. Phys.
137
,
22A544
(
2012
).
4.
H.
Köppel
,
W.
Domcke
, and
L. S.
Cederbaum
,
Adv. Chem. Phys.
57
,
59
(
1984
).
5.
D. R.
Yarkony
,
Rev. Mod. Phys.
68
,
985
(
1996
).
6.
The Role of Degenerate States in Chemistry
,
Advances in Chemical Physics
Vol.
124
, edited by
M.
Baer
and
G. D.
Billing
(
Wiley
,
New York
,
2002
).
7.
Conical Intersections: Electronic Structure, Dynamics and Spectroscopy
, edited by
W.
Domcke
,
D. R.
Yarkony
, and
H.
Köppel
(
World Scientific
,
Singapore
,
2004
).
8.
G. A.
Worth
and
L. S.
Cederbaum
,
Annu. Rev. Phys. Chem.
55
,
127
(
2004
).
9.
R. T.
Pack
and
G. O.
Hirschfelder
,
J. Chem. Phys.
52
,
521
(
1970
).
10.
G.
Hunter
,
Int. J. Quantum Chem.
9
,
237
(
1975
).
11.
G.
Hunter
,
Int. J. Quantum Chem.
19
,
755
(
1981
).
12.
D. M.
Bishop
and
G.
Hunter
,
Mol. Phys.
30
,
1433
(
1975
).
13.
J.
Czub
and
L.
Wolniewicz
,
Mol. Phys.
36
,
1301
(
1978
).
14.
P.
Cassam-Chenai
,
Chem. Phys. Lett.
420
,
354
(
2006
).
15.
B.
Sutcliffe
,
Theor. Chem. Acc.
127
,
121
(
2010
).
16.
M.
Moshinsky
and
C.
Kittel
,
Proc. Natl. Acad. Sci. U.S.A.
60
,
1110
(
1968
).
17.
J.
Breidbach
and
L. S.
Cederbaum
,
J. Chem. Phys.
118
,
3983
(
2003
).
18.
J.
Zanghellini
,
M.
Kitzler
,
C.
Fabian
,
T.
Brabec
, and
A.
Scrinzi
,
Laser Phys.
13
,
1064
(
2003
).
19.
T.
Kato
and
H.
Kono
,
Chem. Phys. Lett.
392
,
533
(
2004
).
20.
M.
Kitzler
 et al.,
Phys. Rev. A
70
,
041401
(
2004
).
21.
M.
Nest
,
T.
Klamroth
, and
P.
Saalfrank
,
J. Chem. Phys.
122
,
124102
(
2005
).
22.
J.
Caillat
 et al.,
Phys. Rev. A
71
,
012712
(
2005
).
23.
A. I.
Kuleff
,
J.
Breidbach
, and
L. S.
Cederbaum
,
J. Chem. Phys.
123
,
044111
(
2005
).
24.
J.
Breidbach
and
L. S.
Cederbaum
,
Phys. Rev. Lett.
94
,
033901
(
2005
).
25.
26.
S.
Klinkusch
,
T.
Klamroth
, and
P.
Saalfrank
,
Phys. Chem. Chem. Phys.
11
,
3875
(
2009
).
27.
A. D.
Dutoi
,
L. S.
Cederbaum
,
M.
Wormit
,
J. H.
Starcke
, and
A.
Dreuw
,
J. Chem. Phys.
132
,
144302
(
2010
).
28.
A. D.
Dutoi
and
L. S.
Cederbaum
,
J. Phys. Chem. Lett.
2
,
2300
(
2011
).
29.
Y.
Zhang
,
J. D.
Biggs
,
D.
Healion
,
N.
Govind
, and
S.
Mukamel
,
J. Chem. Phys.
137
,
194306
(
2012
).
30.
M.
Drescher
,
M.
Hentschel
,
R.
Kienberger
,
M.
Ulberacker
,
V.
Yakoviev
,
A.
Scrinzi
,
T.
Westerwalbesioh
,
U.
Kleineberg
,
U.
Heinzmann
, and
F.
Krausz
,
Nature (London)
419
,
803
(
2002
).
31.
H.
Niikura
,
F.
Legare
,
R.
Hasbani
,
M. Y.
Ivanov
,
D. M.
Villeneuve
, and
P. B.
Corkum
,
Nature (London)
421
,
826
(
2003
).
32.
H.
Niikura
,
D. M.
Villeneuve
, and
P. B.
Corkum
,
Phys. Rev. Lett.
94
,
083003
(
2005
).
33.
P. B.
Corkum
and
F.
Krausz
,
Nat. Phys.
3
,
381
(
2007
).
34.
O.
Smirnova
,
Y.
Mairesse
,
S.
Patchkovskii
,
N.
Dudovich
,
D.
Villeneuve
,
P.
Corkum
, and
M. Y.
Ivanov
,
Nature (London)
460
,
972
(
2009
).
35.
G.
Sansone
,
T.
Pfeifer
,
K.
Simeonidis
, and
A. I.
Kuleff
,
Chem. Phys. Chem.
13
,
661
(
2012
).
36.
L. S.
Cederbaum
,
J. Chem. Phys.
128
,
124101
(
2008
).
37.
A.
Abedi
,
N. T.
Maitra
, and
E. K. U.
Gross
,
Phys. Rev. Lett.
105
,
123002
(
2010
).
38.
A.
Abedi
,
N. T.
Maitra
, and
E. K. U.
Gross
,
J. Chem. Phys.
137
,
22A530
(
2012
).
39.
B. R.
Johnson
,
J. O.
Hirschfelder
, and
K. H.
Yang
,
Rev. Mod. Phys.
55
,
109
(
1983
).
40.
P.
Schmelcher
,
L. S.
Cederbaum
, and
U.
Kappes
, in
Conceptual Trends in Quantum Chemistry
, edited by
E. S.
Kryachko
and
J. L.
Calais
(
Kluwer Academic Publishers
,
The Netherlands
,
1994
).
41.
O.
Dippel
,
P.
Schmelcher
, and
L. S.
Cederbaum
,
Phys. Rev. A
49
,
4415
(
1994
).
42.
P.
Schmelcher
and
L. S.
Cederbaum
,
Comments At. Mol. Phys.
D2
,
123
(
2000
).
43.
V. G.
Bezchastnov
,
P.
Schmelcher
, and
L. S.
Cederbaum
,
Phys. Chem. Chem. Phys.
5
,
4981
(
2003
).
44.
P.
Schmelcher
,
L. S.
Cederbaum
, and
H.-D.
Meyer
,
J. Phys. B
21
,
L445
(
1988
).
45.
P.
Schmelcher
,
L. S.
Cederbaum
, and
H.-D.
Meyer
,
Phys. Rev. A
38
,
6066
(
1988
).
46.
T.
Detmer
,
P.
Schmelcher
, and
L. S.
Cederbaum
,
J. Phys. B
28
,
2903
(
1995
).
47.
N.
Gidopoulos
and
E. K. U.
Gross
, preprint arXiv:cond-mat/0502433.
You do not currently have access to this content.