The effective atomic orbitals have been realized in the framework of Bader's atoms in molecules theory for a general wavefunction. This formalism can be used to retrieve from any type of calculation a proper set of orthonormalized numerical atomic orbitals, with occupation numbers that sum up to the respective Quantum Theory of Atoms in Molecules (QTAIM) atomic populations. Experience shows that only a limited number of effective atomic orbitals exhibit significant occupation numbers. These correspond to atomic hybrids that closely resemble the core and valence shells of the atom. The occupation numbers of the remaining effective orbitals are almost negligible, except for atoms with hypervalent character. In addition, the molecular orbitals of a calculation can be exactly expressed as a linear combination of this orthonormalized set of numerical atomic orbitals, and the Mulliken population analysis carried out on this basis set exactly reproduces the original QTAIM atomic populations of the atoms. Approximate expansion of the molecular orbitals over a much reduced set of orthogonal atomic basis functions can also be accomplished to a very good accuracy with a singular value decomposition procedure.

1.
R. S.
Mulliken
,
J. Chem. Phys.
23
,
1833
(
1955
).
2.
P.-O.
Löwdin
,
Adv. Quantum Chem.
5
,
185
(
1970
).
3.
F. L.
Hirshfeld
,
Theor. Chim. Acta
44
,
129
(
1977
).
4.
R. F. W.
Bader
,
Atoms in Molecules: A Quantum Theory
(
Oxford University Press
,
Oxford
,
1990
).
5.
I.
Mayer
and
P.
Salvador
,
Chem. Phys. Lett.
383
,
368
(
2004
).
6.
T. C.
Lillestolen
and
R. J.
Wheatley
,
Chem. Commun.
45
,
5909
(
2008
).
7.
P.
Bultinck
,
C. Van
Alsenoy
,
P. W.
Ayers
, and
R.
Carbó-Dorca
,
J. Chem. Phys.
126
,
144111
(
2007
).
8.
T. C.
Lillestolen
and
R. J.
Wheatley
,
Chem. Commun.
2008
,
5909
.
9.
P.
Bultinck
,
D. L.
Cooper
, and
D. V.
Neck
,
Phys. Chem. Chem. Phys.
11
,
3424
(
2009
).
10.
T. C.
Lillestolen
and
R. J.
Wheatley
,
J. Chem. Phys.
131
,
144101
(
2009
).
11.
I.
Mayer
,
J. Comput. Chem.
28
,
204
(
2007
).
12.
J.
Baker
,
Theor. Chim. Acta
68
,
221
(
1985
).
13.
E. R.
Davidson
,
J. Chem. Phys.
46
,
3320
(
1967
).
14.
R.
Heinzmann
and
R.
Ahlrichs
,
Theor. Chem. Acc.
42
,
33
(
1976
).
15.
J. G.
Ángyán
,
M.
Loos
, and
I.
Mayer
,
J. Phys. Chem.
98
,
5244
(
1994
).
16.
E.
Ramos-Cordoba
,
E.
Matito
,
P.
Salvador
, and
I.
Mayer
,
Phys. Chem. Chem. Phys.
14
,
15291
(
2012
).
17.
P.
Salvador
and
I.
Mayer
,
J. Phys. Chem.
120
,
5046
(
2004
).
18.
M. A.
Blanco
,
A. Martín
Pendás
, and
E.
Francisco
,
J. Chem. Theory Comput.
1
,
1096
(
2005
).
19.
E.
Francisco
,
A. M.
Pendás
, and
M. A.
Blanco
,
J. Chem. Theory Comput.
2
,
90
(
2006
).
20.
E.
Ramos-Cordoba
,
E.
Matito
,
I.
Mayer
, and
P.
Salvador
,
J. Chem. Theory Comput.
8
,
1270
(
2012
).
21.
M. D. Pedro
Salvador
and
I.
Mayer
,
J. Chem. Phys.
115
,
1153
(
2001
).
22.
D. R.
Alcoba
,
L.
Lain
,
A.
Torre
, and
R. C.
Bochicchio
,
Chem. Phys. Lett.
407
,
379
(
2005
).
23.
L.
Li
and
R. G.
Parr
,
J. Chem. Phys.
84
,
1704
(
1986
).
24.
D. R.
Alcoba
,
L.
Lain
,
A.
Torre
, and
R. C.
Bochicchio
,
J. Chem. Phys.
123
,
144113
(
2005
).
25.
D.
Vanfleteren
,
D. V.
Neck
,
P.
Bultinck
,
P. W.
Ayers
, and
M.
Waroquier
,
J. Chem. Phys.
133
,
231103
(
2010
).
26.
R.
McWeeny
,
Rev. Mod. Phys.
32
,
335
(
1960
).
27.
I.
Mayer
,
Chem. Phys. Lett.
242
,
499
(
1995
).
28.
I.
Mayer
,
J. Phys. Chem.
100
,
6249
(
1996
).
29.
I.
Mayer
,
Can. J. Chem.
74
,
939
(
1996
).
30.
I.
Mayer
and
P.
Salvador
,
J. Chem. Phys.
130
,
234106
(
2009
).
31.
I.
Mayer
,
I.
Bakó
, and
A.
Stirling
,
J. Phys. Chem. A
115
,
12733
(
2011
).
32.
R.
Ponec
,
J. Math. Chem.
21
,
323
(
1997
).
33.
D.
Tiana
,
E.
Francisco
,
M. A.
Blanco
,
P.
Macchi
,
A.
Sironi
, and
A.
Martin Pendás
,
Phys. Chem. Chem. Phys.
13
,
5068
(
2011
).
34.
J.
Cioslowski
,
Int. J. Quantum Chem.
38
,
015
(
1990
).
35.
X.
Fradera
,
M. A.
Austen
, and
R. F.
Bader
,
J. Phys. Chem. A
103
,
304
(
1999
).
36.
P.
Salvador
and
E.
Ramos-Cordoba
, APOST-3D, University of Girona, Spain,
2011
.
37.
J. I.
Rodríguez
 et al,
J. Comput. Chem.
30
,
1082
1092
(
2009
).
38.
M. J.
Frisch
 et al, GAUSSIAN 03, Revision C.02, Gaussian, Inc., Pittsburgh, PA,
2003
.
39.
P.
Karadakov
,
D.
Cooper
,
T.
Thorsteinsson
, and
J.
Gerratt
, “
Modern Valence-Bond Description of the Mechanisms of Six-Electron Pericyclic Reactions
,” in
Quantum Systems in Chemistry and Physics. Volume 1: Basic Problems and Models Systems
, edited by
A.
Hernández-Laguna
,
J.
Maruani
,
R.
McWeeny
and
S.
Wilson
(
Kluwer
,
Dordrecht
,
2000
) pp.
327
344
.
40.
W.
Sander
,
D.
Grote
,
S.
Kossmann
, and
F.
Neese
,
J. Am. Chem. Soc.
130
,
4396
(
2008
).
41.
R.
Ponec
,
E.
Ramos-Cordoba
, and
P.
Salvador
,
J. Phys. Chem. A
117
,
1975
(
2013
).
42.
E.
Ramos-Cordoba
and
P.
Salvador
, “
Local spin analysis of polyradicals
” (unpublished).
43.
M.
Zakharov
, “
Performance of numerical atom-centered basis sets in the ground-state correlated calculations of noncovalent interactions: Water and methane dimer cases
,”
Int. J. Quantum Chem.
(published online).
44.
I.
Mayer
,
Chem. Phys. Lett.
97
,
270
(
1983
).
You do not currently have access to this content.