We explore various design principles for efficient excitation energy transport in complex quantum systems. We investigate energy transfer efficiency in randomly disordered geometries consisting of up to 20 chromophores to explore spatial and spectral properties of small natural/artificial Light-Harvesting Complexes (LHC). We find significant statistical correlations among highly efficient random structures with respect to ground state properties, excitonic energy gaps, multichromophoric spatial connectivity, and path strengths. These correlations can even exist beyond the optimal regime of environment-assisted quantum transport. For random configurations embedded in spatial dimensions of 30 Å or 50 Å, we observe that the transport efficiency saturates to its maximum value if the systems contain around 7 or 14 chromophores, respectively. Remarkably, these optimum values coincide with the number of chlorophylls in the Fenna-Matthews-Olson protein complex and LHC II monomers, respectively, suggesting a potential natural optimization with respect to chromophoric density.

1.
V.
May
and
O.
Kuhn
,
Charge and Energy Transfer Dynamics in Molecular Systems
(
Wiley-VCH
,
Weinheim
,
2004
).
2.
S.
Mukamel
,
Principles of Nonlinear Optical Spectroscopy
(
Oxford University Press
,
USA
,
1999
).
3.
G. S.
Engel
,
T. R.
Calhoun
,
E. L.
Read
,
T. K.
Ahn
,
T.
Mancal
,
Y. C.
Cheng
,
R. E.
Blankenship
, and
G. R.
Fleming
,
Nature (London)
446
,
782
(
2007
).
4.
M.
Mohseni
,
P.
Rebentrost
,
S.
Lloyd
, and
A.
Aspuru-Guzik
,
J. Chem. Phys.
129
,
174106
(
2008
).
5.
P.
Rebentrost
,
M.
Mohseni
, and
A.
Aspuru-Guzik
,
J. Phys. Chem. B
113
,
9942
(
2009
).
6.
P.
Rebentrost
,
M.
Mohseni
,
I.
Kassal
,
S.
Lloyd
, and
A.
Aspuru-Guzik
,
New J. Phys.
11
,
033003
(
2009
).
7.
M. B.
Plenio
and
S. F.
Huelga
,
New J. Phys.
10
,
113019
(
2008
).
8.
J.
Cao
and
R.
Silbey
,
J. Phys. Chem. A
113
,
13825
(
2009
).
9.
F.
Caruso
,
A. W.
Chin
,
A.
Datta
,
S. F.
Huelga
, and
M. B.
Plenio
,
Phys. Rev. A
81
,
062346
(
2010
).
10.
G.
Panitchayangkoon
,
D.
Hayes
,
K. A.
Fransted
,
J. R.
Caram
,
E.
Harel
,
J.
Wen
,
R. E.
Blankenship
, and
G. S.
Engel
,
Proc. Natl. Acad. Sci. U.S.A.
107
,
12766
(
2010
).
11.
A.
Shabani
,
M.
Mohseni
,
H.
Rabitz
, and
S.
Lloyd
,
Phys. Rev. E
86
,
011915
(
2012
).
12.
M.
Mohseni
,
A.
Shabani
,
H.
Rabitz
, and
S.
Lloyd
, e-print arXiv:1103.3823.
13.
G. D.
Scholes
,
G. R.
Fleming
,
A.
Olaya-Castro
, and
R. V.
Grondelle
,
Nat. Chem.
3
,
763
(
2011
).
14.
Quantum Effects in Biology
, edited by
M.
Mohseni
,
Y.
Omar
,
G.
Engel
, and
M.
Plenio
(
Cambridge University Press
,
Cambridge, UK
,
2013
).
15.
S.
Lloyd
and
M.
Mohseni
,
New J. Phys.
12
,
075020
(
2010
).
16.
D.
Abasto
,
M.
Mohseni
,
S.
Lloyd
, and
P.
Zanardi
,
Philos. Trans. R. Soc. London, Ser. A
370
,
3750
(
2012
).
17.
R. E.
Blankenship
,
Molecular Mechanism of Photosynthesis
(
Blackwell Science
,
London
,
2002
).
18.
H.
Lee
,
Y.-C.
Cheng
, and
G. R.
Fleming
,
Science
316
,
1462
(
2007
).
19.
Until recently it was believed that the number of chromophores for FMO is seven, but recent studies suggest the existence of an eighth shared chromophore between the FMO three monomers; e.g., please see
M.
Schmidt
am Busch,
F.
Muh
,
M. E. A.
Madjet
, and
T.
Renger
,
J. Phys. Chem. Lett.
2
,
93
(
2011
).
20.
T. R.
Calhoun
,
N. S.
Ginsberg
,
G. S.
Schlau-Cohen
,
Y.-C.
Cheng
,
M.
Ballottari
,
R.
Bassi
, and
G. R.
Fleming
,
J. Phys. Chem. B
113
,
16291
(
2009
).
21.
T.
Scholak
,
F. D.
Melo
,
T.
Wellens
,
F.
Mintert
, and
A.
Buchleitner
,
Phys. Rev. E
83
,
021912
(
2011
).
22.
H.-P.
Breuer
and
F.
Petruccione
,
The Theory of Open Quantum Systems
(
Oxford University Press
,
New York
,
2002
).
23.
G. S.
Beddard
and
G.
Porter
,
Nature (London)
260
,
366
(
1976
).
24.
J.
Cao
,
J. Chem. Phys.
107
,
3204
(
1997
).
25.
A.
Ishizaki
and
G. R.
Fleming
,
J. Chem. Phys.
130
,
234110
(
2009
).
26.
T.
Ritz
,
S.
Park
, and
K.
Schulten
,
J. Phys. Chem. B
105
,
8259
(
2001
).
27.
A.
Olaya-Castro
,
C. Fan
Lee
,
F. Fassioli
Olsen
, and
N. F.
Johnson
,
Phys. Rev. B
78
,
085115
(
2008
).
28.
S.
Hoyer
,
M.
Sarovar
, and
K. B.
Whaley
,
New J. Phys.
12
,
065041
(
2010
).
29.
A.
Ishizaki
and
G. R.
Fleming
,
Proc. Natl. Acad. Sci. U.S.A.
106
,
17255
(
2009
).
30.
G. D.
Scholes
,
Annu. Rev. Phys. Chem.
54
,
57
87
(
2003
).
31.
In this work, whenever it is not specified otherwise, the environmental parameters for the FMO complex are chosen according to the estimated values of reorganization energy 35 cm−1, bath cutoff frequency 50 cm−1, temperature 298 °K, trapping rate of 1 ps, exciton lifetime of 1 ns.
32.
T.
Förster
, in
Modern Quantum Chemistry
,
Istanbul Lectures
, edited by
O.
Sinanoglu
(
Academic
,
New York
,
1965
), Vol.
3
, pp.
93
137
.
33.
M.
Yang
and
G. R.
Fleming
,
Chem. Phys.
275
,
355
(
2002
).
34.
A.
Kolli
 et al,
J. Chem. Phys.
137
,
174109
(
2012
).
35.
A. W.
Chin
 et al,
Philos. Trans. R. Soc. London, Ser. A
370
,
3638
3657
(
2012
).
36.
A. W.
Chin
 et al,
Nat. Phys.
9
,
113
(
2013
).
37.
Y.-Z.
Ma
,
R. A.
Miller
,
G. R.
Fleming
, and
M. B.
Francis
,
J. Phys. Chem. B
112
,
6887
(
2008
).
38.
R. A.
Miller
,
N.
Stephanopoulos
,
J. M.
McFarland
,
A. S.
Rosko
,
P. L.
Geissler
, and
M. B.
Francis
,
J. Am. Chem. Soc.
132
,
6068
(
2010
).
39.
S.
Jesenko
and
M.
Znidaric
,
New J. Phys.
14
,
093017
(
2012
).
40.
M.
Sarovar
,
A.
Ishizaki
,
G. R.
Fleming
, and
K. B.
Whaley
,
Nat. Phys.
6
,
462
(
2010
).
41.
S.
Weiss
 et al,
Phys. Rev. B
77
,
195316
(
2008
).
42.
J.
Prior
 et al,
Phys. Rev. Lett.
105
,
050404
(
2010
).
43.
A. W.
Chin
 et al,
J. Math. Phys.
51
,
092109
(
2010
).
44.
C.
Curutchet
 et al,
J. Am. Chem. Soc.
133
,
3078
(
2011
).
45.
S.
Lloyd
,
M.
Mohseni
,
A.
Shabani
, and
H.
Rabitz
, e-print arXiv:1111.4982.
46.
D. M.
Eisele
 et al,
Nat. Nanotechnol.
4
,
658
(
2009
).
47.
D. M.
Eisele
 et al,
Nat. Chem.
4
,
655
(
2012
).
48.
Y. S.
Nam
 et al,
J. Am. Chem. Soc.
132
,
1462
(
2010
).
49.
X.
Dang
 et al,
Nat. Nanotechnol.
6
,
377
(
2011
).
You do not currently have access to this content.