Computational methods that utilize chemical shifts to produce protein structures at atomic resolution have recently been introduced. In the current work, we exploit chemical shifts by combining the basin-hopping approach to global optimization with chemical shift restraints using a penalty function. For three peptides, we demonstrate that this approach allows us to find near-native structures from fully extended structures within 10 000 basin-hopping steps. The effect of adding chemical shift restraints is that the α and β secondary structure elements form within 1000 basin-hopping steps, after which the orientation of the secondary structure elements, which produces the tertiary contacts, is driven by the underlying protein force field. We further show that our chemical shift-restraint BH approach also works for incomplete chemical shift assignments, where the information from only one chemical shift type is considered. For the proper implementation of chemical shift restraints in the basin-hopping approach, we determined the optimal weight of the chemical shift penalty energy with respect to the CHARMM force field in conjunction with the FACTS solvation model employed in this study. In order to speed up the local energy minimization procedure, we developed a function, which continuously decreases the width of the chemical shift penalty function as the minimization progresses. We conclude that the basin-hopping approach with chemical shift restraints is a promising method for protein structure prediction.

1.
D. S.
Wishart
and
D. A.
Case
,
Method Enzymol.
338
,
3
(
2002
).
2.
C. D.
Schwieters
,
J. J.
Kuszewski
,
N.
Tjandra
, and
G. M.
Clore
,
J. Magn. Reson.
160
,
65
(
2003
).
3.
4.
A.
Cavalli
,
X.
Salvatella
,
C. M.
Dobson
, and
M.
Vendruscolo
,
Proc. Natl. Acad. Sci. U.S.A.
104
,
9615
(
2007
).
5.
P.
Robustelli
,
A.
Cavalli
, and
M.
Vendruscolo
,
Structure (London)
16
,
1764
(
2008
).
6.
P.
Robustelli
,
A.
Cavalli
,
C. M.
Dobson
,
M.
Vendruscolo
, and
X.
Salvatella
,
J. Phys. Chem. B
113
,
7890
(
2009
).
7.
P.
Robustelli
,
K.
Kohlhoff
,
A.
Cavalli
, and
M.
Vendruscolo
,
Structure (London)
18
,
923
(
2010
).
8.
Y.
Shen
 et al,
Proc. Natl. Acad. Sci. U.S.A.
105
,
4685
(
2008
).
9.
D. S.
Wishart
 et al,
Nucleic Acids Res.
36
,
W496
(
2008
).
10.
M.
Berjanskii
 et al,
Nucleic Acids Res.
37
,
W670
(
2009
).
11.
R.
Das
 et al,
Proc. Natl. Acad. Sci. U.S.A.
106
,
18978
(
2009
).
12.
F. C.
Bernstein
 et al,
J. Mol. Biol.
112
,
535
(
1977
).
13.
J.
Kuszewski
,
A. M.
Gronenborn
, and
G. M.
Clore
,
J. Magn. Reson. Ser. B
107
,
293
(
1995
).
14.
J. G.
Pearson
,
J.-F.
Wang
,
J. L.
Markley
,
H.-B.
Le
, and
E.
Oldfield
,
J. Am. Chem. Soc.
117
,
8823
(
1995
).
15.
P.
Luginbühl
,
T.
Szyperski
, and
K.
Wüthrich
,
J. Magn. Reson. Ser. B
109
,
229
(
1995
).
16.
H.
Gong
,
Y.
Shen
, and
G. D.
Rose
,
Protein Sci.
16
,
1515
(
2007
).
17.
R.
Montalvao
,
A.
Cavalli
, and
X.
Salvatella
,
J. Am. Chem. Soc.
130
,
15990
(
2008
).
18.
Y.
Shen
,
R.
Vernon
,
D.
Baker
, and
A.
Bax
,
J. Biomol. NMR
43
,
63
(
2009
).
19.
P.
Neudecker
 et al,
Science
336
,
362
(
2012
).
20.
F.
Delaglio
,
G.
Kontaxis
, and
A.
Bax
,
J. Am. Chem. Soc.
122
,
2142
(
2000
).
21.
G. M.
Clore
and
A. M.
Gronenborn
,
Proc. Natl. Acad. Sci. U.S.A.
95
,
5891
(
1998
).
22.
K. J.
Kohlhoff
,
P.
Robustelli
,
A.
Cavalli
,
X.
Salvatella
, and
M.
Vendruscolo
,
J. Am. Chem. Soc.
131
,
13894
(
2009
).
23.
D. J.
Wales
and
J. P. K.
Doye
,
J. Phys. Chem. A
101
,
5111
(
1997
).
24.
D. J.
Wales
and
H. A.
Scheraga
,
Science
285
,
1368
(
1999
).
25.
Z.
Li
and
H. A.
Scheraga
,
Proc. Natl. Acad. Sci. U.S.A.
84
,
6611
(
1987
).
26.
P.
Derreumaux
,
J. Chem. Phys.
106
,
5260
(
1997
).
27.
P.
Derreumaux
,
J. Chem. Phys.
107
,
1941
(
1997
).
28.
P. N.
Mortenson
and
D. J.
Wales
,
J. Chem. Phys.
114
,
6443
(
2001
).
29.
P. N.
Mortenson
,
D. A.
Evans
, and
D. J.
Wales
,
J. Chem. Phys.
117
,
1363
(
2002
).
30.
J. M.
Carr
and
D. J.
Wales
,
J. Chem. Phys.
123
,
234901
(
2005
).
31.
A.
Verma
,
A.
Schug
,
K. H.
Lee
, and
W.
Wenzel
,
J. Chem. Phys.
124
,
044515
(
2006
).
32.
B.
Strodel
and
D. J.
Wales
,
J. Chem. Theor. Comput.
4
,
657
(
2008
).
33.
B.
Strodel
,
J.
Lee
,
C.
Whittleston
, and
D.
Wales
,
J. Am. Chem. Soc.
132
,
13300
(
2010
).
34.
O. O.
Olubiyi
and
B.
Strodel
,
J. Phys. Chem. B
116
,
3280
(
2012
).
35.
A. G.
Cochran
,
N. J.
Skelton
, and
M. A.
Starovasnik
,
Proc. Natl. Acad. Sci. U.S.A.
98
,
5578
(
2001
).
36.
J.
Neidigh
,
R.
Fesinmeyer
, and
N.
Andersen
,
Nat. Struct. Biol.
9
,
425
(
2002
).
37.
T. K.
Chiu
 et al,
Proc. Natl. Acad. Sci. U.S.A.
102
,
7517
(
2005
).
38.
C.
Simmerling
,
B.
Strockbine
, and
A. E.
Roitberg
,
J. Am. Chem. Soc.
124
,
11258
(
2002
).
39.
S.
Chowdhury
,
M. C.
Lee
,
G.
Xiong
, and
Y.
Duan
,
J. Mol. Biol.
327
,
711
(
2003
).
40.
A.
Schug
,
T.
Herges
, and
W.
Wenzel
,
Phys. Rev. Lett.
91
,
158102
(
2003
).
41.
A.
Schug
,
T.
Herges
,
A.
Verma
,
K. H.
Lee
, and
W.
Wenzel
,
ChemPhysChem
6
,
2640
(
2005
).
42.
A.
Schug
,
W.
Wenzel
, and
U.
Hansmann
,
J. Chem. Phys.
122
,
194711
(
2005
).
43.
K.
Lindorff-Larsen
,
S.
Piana
,
R. O.
Dror
, and
D. E.
Shaw
,
Science
334
,
517
(
2011
).
44.
S.
Piana
,
K.
Lindorff-Larsen
, and
D. E.
Shaw
,
Biophys. J.
100
,
L47
(
2011
).
45.
J.
Maupetit
,
P.
Derreumaux
, and
P.
Tufféry
,
Nucleic Acids Res.
37
,
W498
(
2009
).
46.
P.
Thévenet
 et al,
Nucleic Acids Res.
40
,
W288
(
2012
).
47.
J. W.
Pitera
and
W.
Swope
,
Proc. Natl. Acad. Sci. U.S.A.
100
,
7587
(
2003
).
48.
J.
Juraszek
and
P. G.
Bolhuis
,
Proc. Natl. Acad. Sci. U.S.A.
103
,
15859
(
2006
).
49.
D.
Paschek
,
H.
Nymeyer
, and
A. E.
García
,
J. Struct. Biol.
157
,
524
(
2007
).
50.
K.
Klenin
and
W.
Wenzel
,
Int. J. Comput. Commun.
1
,
1
(
2007
).
51.
I. H.
Radford
,
A. R.
Fersht
, and
G.
Settanni
,
J. Phys. Chem. B
115
,
7459
(
2011
).
52.
J.
Kubelka
,
T. K.
Chiu
,
D. R.
Davies
,
W. A.
Eaton
, and
J.
Hofrichter
,
J. Mol. Biol.
359
,
546
(
2006
).
53.
T.
Cellmer
,
M.
Buscaglia
,
E. R.
Henry
,
J.
Hofrichter
, and
W. A.
Eaton
,
Proc. Natl. Acad. Sci. U.S.A.
108
,
6103
(
2011
).
54.
Y.
Tang
,
M. J.
Grey
,
J.
McKnight
,
A. G.
Palmer
 III
, and
D. P.
Raleigh
,
J. Mol. Biol.
355
,
1066
(
2006
).
55.
P. L.
Freddolino
and
K.
Schulten
,
Biophys. J.
97
,
2338
(
2009
).
56.
D. R.
Ripoll
,
J. A.
Vila
, and
H. A.
Scheraga
,
J. Mol. Biol.
339
,
915
(
2004
).
57.
W.
Humphrey
,
A.
Dalke
, and
K.
Schulten
,
J. Mol. Graphics
14
,
33
(
1996
).
58.
See supplementary material at http://dx.doi.org/10.1063/1.4773406 for a graphical presentation of the starting structures, the performance of chemical shift restrained BH runs for various (α, n) pairs, and a graphical presentation showing the statistics of how frequently the different chemical shifts are measured in proteins as derived from a total of about 5.6 × 106 chemical shifts in the Biological Magnetic Resonance Data Bank.
59.
B. R.
Brooks
 et al,
J. Comput. Chem.
4
,
187
(
1983
).
60.
A. D.
MacKerell
 Jr.
 et al,
J. Phys. Chem. B
102
,
3586
(
1998
).
61.
U.
Haberthür
and
A.
Caflisch
,
J. Comput. Chem.
29
,
701
(
2008
).
62.
N.
Metropolis
,
A. W.
Rosenbluth
,
M. N.
Rosenbluth
,
A. H.
Teller
, and
E.
Teller
,
J. Chem. Phys.
21
,
1087
(
1953
).
63.
D. J.
Wales
, GMIN: A Program for Basin-Hopping Global Optimisation, see http://www-wales.ch.cam.ac.uk/software.html.
64.
M. A.
Miller
and
D. J.
Wales
,
J. Chem. Phys.
111
,
6610
(
1999
).
65.
M.
Bauer
,
B.
Strodel
,
S.
Fejer
,
E.
Koslover
, and
D.
Wales
,
J. Chem. Phys.
132
,
054101
(
2010
).
66.
R. H.
Byrd
,
P.
Lu
,
J.
Nocedal
, and
C.
Zhu
,
SIAM J. Sci. Stat. Comput.
16
,
1190
(
1995
).
67.
D.
Frishman
and
P.
Argos
,
Proteins: Struct., Funct., Bioinf.
23
,
566
(
1995
).

Supplementary Material

You do not currently have access to this content.