We have recently extended the electron propagator theory to the treatment of any type of particle using an Any-Particle Molecular Orbital (APMO) wavefunction as reference state. This approach, called APMO/PT, has been implemented in the LOWDIN code to calculate correlated binding energies, for any type of particle in molecular systems. In this work, we present the application of the APMO/PT approach to study proton detachment processes. We employed this method to calculate proton binding energies and proton affinities for a set of inorganic and organic molecules. Our results reveal that the second-order proton propagator (APMO/PP2) quantitatively reproduces experimental trends with an average deviation of less than 0.41 eV. We also estimated proton affinities with an average deviation of 0.14 eV and the proton hydration free energy using APMO/PP2 with a resulting value of −270.2 kcal/mol, in agreement with other results reported in the literature. Results presented in this work suggest that the APMO/PP2 approach is a promising tool for studying proton acid/base properties.

1.
J.
Linderberg
and
Y.
Öhrn
,
Propagators in Quantum Chemistry
, 2nd ed. (
Wiley-Interscience
,
Hoboken, NJ
,
2004
).
2.
P.
Jørgensen
and
J.
Simons
,
Second Quantization-Based Methods in Quantum Chemistry
, 1st ed. (
Academic
,
New York
,
1981
).
3.
B.
Pickup
and
O.
Goscinski
,
Mol. Phys.
26
,
1013
(
1973
).
4.
Y.
Öhrn
and
G.
Born
,
Advances in Quantum Chemistry
(
Academic Press
,
1981
), Vol.
13
, pp.
1
88
.
5.
J. V.
Ortiz
,
Advances in Quantum Chemistry
(
Academic Press
,
1999
), Vol.
35
, pp.
33
52
.
6.
L. S.
Cederbaum
and
W.
Domcke
,
Adv. Chem. Phys.
36
,
205
(
1977
).
7.
W.
von Niessen
,
J.
Schirmer
, and
L.
Cederbaum
,
Comput. Phys. Rep.
1
,
57
(
1984
).
8.
J.
Simons
and
W. D.
Smith
,
J. Chem. Phys.
58
,
4899
(
1973
).
9.
M. F.
Herman
,
K. F.
Freed
, and
D. L.
Yeager
,
Analysis and Evaluation of Ionization Potentials, Electron Affinities, and Excitation Energies by the Equations of Motion–Green's Function Method
,
Advances in Chemical Physics
(
Wiley
,
1981
), pp.
1
69
.
10.
J. V.
Ortiz
,
J. Chem. Phys.
104
,
7599
(
1996
).
11.
V. G.
Zakrzewski
,
O.
Dolgounitcheva
,
A. V.
Zakjevskii
, and
J. V.
Ortiz
,
Annu. Rep. Comput. Chem.
6
,
79
(
2010
).
12.
V. G.
Zakrzewski
,
O.
Dolgounitcheva
,
A. V.
Zakjevskii
, and
J. V.
Ortiz
,
Adv. Quantum Chem.
62
,
105
(
2011
).
13.
J. V.
Ortiz
,
WIREs Comput. Mol. Sci.
3
,
123
142
(
2013
).
14.
R.
Flores-Moreno
,
J.
Melin
,
O.
Dolgounitcheva
,
V. G.
Zakrzewski
, and
J. V.
Ortiz
,
Int. J. Quantum Chem.
110
,
706
(
2010
).
15.
L. S.
Cederbaum
,
J. Phys. B.
8
,
290
(
1975
).
16.
L. S.
Cederbaum
,
W.
Domcke
,
J.
Schirmer
, and
W.
Von Niessen
,
Adv. Chem. Phys.
65
,
115
(
1986
).
17.
J.
Schirmer
,
L. S.
Cederbaum
, and
O.
Walter
,
Phys. Rev. A
28
,
1237
(
1983
).
18.
J.
Romero
,
E.
Posada
,
R.
Flores-Moreno
, and
A.
Reyes
,
J. Chem. Phys.
137
,
074105
(
2012
).
19.
M.
Tachikawa
,
K.
Mori
,
H.
Nakai
, and
K.
Iguchi
,
Chem. Phys. Lett.
290
,
437
(
1998
).
20.
S.
Webb
,
T.
Iordanov
, and
S.
Hammes-Schiffer
,
J. Chem. Phys.
117
,
4106
(
2002
).
21.
H.
Nakai
,
Int. J. Quantum Chem.
86
,
511
(
2002
).
22.
H.
Nakai
and
K.
Sodeyama
,
J. Chem. Phys.
118
,
1119
(
2003
).
23.
A.
Reyes
,
M.
Pak
, and
S.
Hammes-Schiffer
,
J. Chem. Phys.
123
,
064104
(
2005
).
24.
H.
Nakai
,
Int. J. Quantum Chem.
107
,
2849
(
2007
).
25.
H.
Nakai
,
Y.
Ikabata
,
Y.
Tsukamoto
,
Y.
Imamura
,
K.
Miyamoto
, and
M.
Hoshino
,
Mol. Phys.
105
,
2649
(
2007
).
26.
P.
Adamson
,
X.
Duan
,
L.
Burggraf
,
M.
Pak
,
C.
Swalina
, and
S.
Hammes-Schiffer
,
J. Phys. Chem. A
112
,
1346
(
2008
).
27.
S.
González
,
N.
Aguirre
, and
A.
Reyes
,
Int. J. Quantum Chem.
108
,
1742
(
2008
).
28.
T.
Ishimoto
,
M.
Tachikawa
, and
U.
Nagashima
,
Int. J. Quantum Chem.
109
,
2677
(
2009
).
29.
T.
Udagawa
and
M.
Tachikawa
,
Multi-Component Molecular Orbital Theory
(
Nova Science Publishers
,
New York
,
2009
).
30.
S.
González
and
A.
Reyes
,
Int. J. Quantum Chem.
110
,
689
(
2010
).
31.
F.
Moncada
,
D.
Cruz
, and
A.
Reyes
,
Chem. Phys. Lett.
539–540
,
209
(
2012
).
32.
M.
Müller
and
L. S.
Cederbaum
,
Phys. Rev. A
42
,
170
(
1990
).
33.
C.
Møller
and
M. S.
Plesset
,
Phys. Rev.
46
,
618
(
1934
).
34.
P.-O.
Löwdin
,
J. Math. Phys.
6
,
1341
(
1965
).
35.
P.-O.
Löwdin
,
Phys. Rev.
139
,
A357
(
1965
).
36.
R.
Flores-Moreno
,
S. A.
González
,
N. F.
Aguirre
,
E. F.
Posada
,
J.
Romero
,
F. S.
Moncada
,
K.
Pineda
,
M.
Díaz
, and
A.
Reyes
, LOWDIN: A general code for the treatment of any quantum particle (
2012
), see https://sites.google.com/site/lowdinproject/home.
37.
J. T.
Fermann
and
E. F.
Valeev
, LIBINT: Machine-generated library for efficient evaluation of molecular integrals over Gaussians (
2003
), see http://sourceforge.net/p/libint.
38.
S.
Yamamoto
and
U.
Nagashima
,
Comput. Phys. Commun.
166
,
58
(
2005
).
39.
NIST Computational Chemistry Comparison and Benchmark Database, NIST Standard Reference Database Number 101, Release 15b, August 2011, edited by
R. D.
Johnson
 III
, seehttp://cccbdb.nist.gov.sci-hub.org/(Retrieved, November 24, 2011).
40.
T.
Dunning
 Jr.
,
J. Chem. Phys.
90
,
1007
(
1989
).
41.
S.
Vosko
,
L.
Wilk
, and
M.
Nusair
,
Can. J. Phys.
58
,
1200
(
1980
).
42.
A.
McLean
and
G.
Chandler
,
J. Chem. Phys.
72
,
5639
(
1980
).
43.
K.
Raghavachari
,
J.
Binkley
,
R.
Seeger
, and
J.
Pople
,
J. Chem. Phys.
72
,
650
(
1980
).
44.
T.
Clark
,
J.
Chandrasekhar
,
G.
Spitznagel
, and
P.
Schleyer
,
J. Comput. Chem.
4
,
294
(
1983
).
45.
M.
Frisch
,
J.
Pople
, and
J.
Binkley
,
J. Chem. Phys.
80
,
3265
(
1984
).
46.
J.
Andzelm
,
E.
Radzio
, and
D.
Salahub
,
J. Comput. Chem.
6
,
520
(
1985
).
47.
J.
Andzelm
,
N.
Russo
, and
D.
Salahub
,
J. Chem. Phys.
87
,
6562
(
1987
).
48.
A.
Köster
,
P.
Geudtner
,
P.
Calaminici
,
M.
Casida
,
V.
Dominguez
,
R.
Flores-Moreno
,
G.
Gamboa
,
A.
Goursot
,
T.
Heine
,
A.
Ipatov
 et al, deMon2k, Release 2.4.2, Cinvestav, Mexico-City, Mexico (
2006
), See http://www.demon-software.com.
49.
J.
Perdew
,
P.
Ziesche
, and
H.
Eschrig
,
Electronic Structure of Solids
(
Academic-Verlag
,
Berlin
,
1991
).
50.
R.
Ditchfield
,
W.
Hehre
, and
J.
Pople
,
J, Chem. Phys
54
,
724
(
1971
).
51.
W.
Hehre
,
R.
Ditchfield
, and
J.
Pople
,
J. Chem. Phys.
56
,
2257
(
1972
).
52.
53.
M. N.
Saha
,
Philos. Mag. 6
40
,
472
(
1920
).
54.
J. D. D.
Martin
, Ph.D. dissertation,
University of Waterloo
,
1998
.
55.
J.
Martin
and
J.
Hepburn
,
J. Chem. Phys.
109
,
8139
(
1998
).
56.
R.
Shiell
,
X.
Hu
,
Q.
Hu
, and
J.
Hepburn
,
Faraday Discuss.
115
,
331
(
2000
).
57.
R.
Shiell
,
X.
Hu
,
Q.
Hu
, and
J.
Hepburn
,
J. Phys. Chem. A
104
,
4339
(
2000
).
58.
Q.
Hu
,
T.
Melville
, and
J.
Hepburn
,
J. Chem. Phys.
119
,
8938
(
2003
).
59.
Q.
Hu
,
Q.
Zhang
, and
J.
Hepburn
,
J. Chem. Phys.
124
,
074310
(
2006
).
60.
A.
Szabo
and
N. S.
Ostlund
,
Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory
(
Dover Publications
,
New York
,
1996
).
61.
62.
Q.
Hu
and
J.
Hepburn
,
J. Chem. Phys.
124
,
074311
(
2006
).
63.
A.
McNaught
and
A.
Wilkinson
,
Compendium of Chemical Terminology
(
Blackwell Science
,
Oxford, UK
,
1997
), Vol.
1669
.
64.
G.
Tawa
,
I.
Topol
,
S.
Burt
,
R.
Caldwell
, and
A.
Rashin
,
J. Chem. Phys.
109
,
4852
(
1998
).
65.
A.
Bochevarov
,
E.
Valeev
, and
C.
Sherrill
,
Mol. Phys.
102
,
111
(
2004
).
66.
W. L.
Jolly
,
Modern Inorganic Chemistry
, 2nd ed. (
McGraw-Hill
,
New York
,
1991
).
67.
E.
Hunter
and
S.
Lias
,
J. Phys. Chem. Ref. Data
27
,
413
(
1998
).
68.
J.
Cumming
and
P.
Kebarle
,
Can. J. Chem.
56
,
1
(
1978
).
69.
S.
Graul
,
M.
Schnute
, and
R.
Squires
,
Int. J. Mass Spectrom. Ion Process.
96
,
181
(
1990
).
70.
K.
Ervin
,
J.
Ho
, and
W.
Lineberger
,
J. Phys. Chem.
92
,
5405
(
1988
).
71.
M.
Hodges
and
A.
Stone
,
J. Chem. Phys.
110
,
6766
(
1999
).
72.
C.
Knight
and
G.
Voth
,
Acc. Chem. Res.
45
,
101
(
2012
).
73.
J.
Pérez
,
C.
Hadad
, and
A.
Restrepo
,
Int. J. Quantum Chem.
108
,
1653
(
2008
).
74.
G.
Hincapié
,
N.
Acelas
,
M.
Castao
,
J.
David
, and
A.
Restrepo
,
J. Phys. Chem. A
114
,
7809
(
2010
).
75.
F.
Ramírez
,
C.
Hadad
,
D.
Guerra
,
J.
David
, and
A.
Restrepo
,
Chem. Phys. Lett.
507
,
229
(
2011
).
76.
K.
Alongi
and
G.
Shields
,
Annu. Rep. Comp. Chem.
6
,
113
(
2010
).
77.
M.
Liptak
and
G.
Shields
,
Int. J. Quantum Chem.
85
,
727
(
2001
).
78.
M.
Liptak
,
K.
Gross
,
P.
Seybold
,
S.
Feldgus
, and
G.
Shields
,
J. Am. Chem. Soc.
124
,
6421
(
2002
).
79.
C.
Kelly
,
C.
Cramer
, and
D.
Truhlar
,
J, Phys. Chem. A
110
,
2493
(
2006
).
80.
C.
Kelly
,
C.
Cramer
, and
D.
Truhlar
,
J. Phys. Chem. B
110
,
16066
(
2006
).
81.
M.
Tissandier
,
K.
Cowen
,
W.
Feng
,
E.
Gundlach
,
M.
Cohen
,
A.
Earhart
,
J.
Coe
, and
T.
Tuttle
 Jr.
,
J. Phys. Chem. A
102
,
7787
(
1998
).
82.
D.
McQuarrie
,
Statistical Mechanics
(
Harper & Row
,
New York
,
1970
).
83.
A.
Rebollar-Zepeda
,
T.
Campos-Hernández
,
M.
Ramírez-Silva
,
A.
Rojas-Hernández
, and
A.
Galano
,
J. Chem. Theory Comput.
7
,
2528
(
2011
).
84.
J.
Ho
and
M.
Coote
,
J. Chem. Theory Comput.
5
,
295
(
2009
).
85.
M.
Hoshino
,
H.
Nishizawa
, and
H.
Nakai
,
J. Chem. Phys.
135
,
024111
(
2011
).
86.
H.
Nishizawa
,
Y.
Imamura
,
Y.
Ikabata
, and
H.
Nakai
,
Chem. Phys. Lett.
533
,
100
(
2012
).
You do not currently have access to this content.