We assess a variant of linear-response range-separated time-dependent density-functional theory (TDDFT), combining a long-range Hartree-Fock (HF) exchange kernel with a short-range adiabatic exchange-correlation kernel in the local-density approximation (LDA) for calculating isotropic C6 dispersion coefficients of homodimers of a number of closed-shell atoms and small molecules. This range-separated TDDFT tends to give underestimated C6 coefficients of small molecules with a mean absolute percentage error of about 5%, a slight improvement over standard TDDFT in the adiabatic LDA which tends to overestimate them with a mean absolute percentage error of 8%, but close to time-dependent Hartree-Fock which has a mean absolute percentage error of about 6%. These results thus show that introduction of long-range HF exchange in TDDFT has a small but beneficial impact on the values of C6 coefficients. It also confirms that the present variant of range-separated TDDFT is a reasonably accurate method even using only a LDA-type density functional and without adding an explicit treatment of long-range correlation.

2.
H. B. G.
Casimir
and
D.
Polder
,
Phys. Rev.
73
,
360
(
1948
).
3.
H. C.
Longuet-Higgins
,
Discuss. Faraday Soc.
40
,
7
(
1965
).
4.
S. J. A.
van Gisbergen
,
J. G.
Snijders
, and
E. J.
Baerends
,
J. Chem. Phys.
103
,
9347
(
1995
).
5.
M. A. L.
Marques
,
A.
Castro
,
G.
Malloci
,
G.
Mulas
, and
S.
Botti
,
J. Chem. Phys.
127
,
014107
(
2007
).
6.
A.
Banerjee
,
A.
Chakrabarti
, and
T. K.
Ghanty
,
J. Chem. Phys.
127
,
134103
(
2007
).
7.
A.
Banerjee
,
J.
Autschbach
, and
A.
Chakrabarti
,
Phys. Rev. A
78
,
032704
(
2008
).
8.
V. P.
Osinga
,
S. J. A.
van Gisbergen
,
J. G.
Snijders
, and
E. J.
Baerends
,
J. Chem. Phys.
106
,
5091
(
1997
).
9.
M. J. T.
Oliveira
,
S.
Botti
, and
M. A. L.
Marques
,
Phys. Chem. Chem. Phys.
13
,
15055
(
2011
).
10.
P.
Norman
,
A.
Jiemchooroj
, and
B. E.
Sernelius
,
J. Chem. Phys.
118
,
9167
(
2003
).
11.
A.
Jiemchooroj
,
P.
Norman
, and
B. E.
Sernelius
,
J. Chem. Phys.
123
,
124312
(
2005
).
12.
A.
Jiemchooroj
,
P.
Norman
, and
B. E.
Sernelius
,
J. Chem. Phys.
125
,
124306
(
2006
).
13.
D.
Sulzer
,
P.
Norman
, and
T.
Saue
,
Mol. Phys.
110
,
2535
(
2012
).
14.
J.
Kauczor
,
P.
Norman
, and
W. A.
Saidi
,
J. Chem. Phys.
138
,
114107
(
2013
).
15.
X.
Chu
and
A.
Dalgarno
,
J. Chem. Phys.
121
,
4083
(
2004
).
16.
S.
Hirata
,
J. Chem. Phys.
123
,
026101
(
2005
).
17.
Y.
Shigeta
,
K.
Hirao
, and
S.
Hirata
,
Phys. Rev. A
73
,
010502
(
2006
).
18.
M.
Hellgren
and
U.
von Barth
,
Phys. Rev. B
78
,
115107
(
2008
).
19.
M.
Hellgren
and
U.
von Barth
,
J. Chem. Phys.
132
,
044101
(
2010
).
20.
T.
Gould
,
J. Chem. Phys.
137
,
111101
(
2012
).
21.
A.
Heßelmann
and
G.
Jansen
,
Chem. Phys. Lett.
367
,
778
(
2003
).
22.
A. J.
Misquitta
,
B.
Jeziorski
, and
K.
Szalewicz
,
Phys. Rev. Lett.
91
,
033201
(
2003
).
23.
Y.
Tawada
,
T.
Tsuneda
,
S.
Yanagisawa
,
T.
Yanai
, and
K.
Hirao
,
J. Chem. Phys.
120
,
8425
(
2004
).
24.
H.
Iikura
,
T.
Tsuneda
,
T.
Yanai
, and
K.
Hirao
,
J. Chem. Phys.
115
,
3540
(
2001
).
25.
M.
Kamiya
,
H.
Sekino
,
T.
Tsuneda
, and
K.
Hirao
,
J. Chem. Phys.
122
,
234111
(
2005
).
26.
H.
Sekino
,
Y.
Maeda
, and
M.
Kamiya
,
Mol. Phys.
103
,
2183
(
2005
).
27.
H.
Sekino
,
Y.
Maeda
,
M.
Kamiya
, and
K.
Hirao
,
J. Chem. Phys.
126
,
014107
(
2007
).
28.
D.
Jacquemin
,
E. A.
Perpète
,
G.
Scalmani
,
M. J.
Frisch
,
R.
Kobayashi
, and
C.
Adamo
,
J. Chem. Phys.
126
,
144105
(
2007
).
29.
D.
Jacquemin
,
E. A.
Perpète
,
I.
Ciofini
, and
C.
Adamo
,
J. Comput. Chem.
29
,
921
(
2008
).
30.
B.
Kirtman
,
S.
Bonness
,
A.
Ramirez-Solis
,
B.
Champagne
,
H.
Matsumoto
, and
H.
Sekino
,
J. Chem. Phys.
128
,
114108
(
2008
).
31.
J.-W.
Song
,
M. A.
Watson
,
H.
Sekino
, and
K.
Hirao
,
J. Chem. Phys.
129
,
024117
(
2008
).
32.
E.
Livshits
and
R.
Baer
,
Phys. Chem. Chem. Phys.
9
,
2932
(
2007
).
33.
T.
Yanai
,
D. P.
Tew
, and
N. C.
Handy
,
Chem. Phys. Lett.
393
,
51
(
2004
).
34.
J.-W.
Song
,
S.
Tokura
,
T.
Sato
,
M. A.
Watson
, and
K.
Hirao
,
J. Chem. Phys.
127
,
154109
(
2007
).
35.
J.-D.
Chai
and
M.
Head-Gordon
,
J. Chem. Phys.
128
,
084106
(
2008
).
36.
A. W.
Lange
,
M. A.
Rohrdanz
, and
J. M.
Hubert
,
J. Phys. Chem. B
112
,
6304
(
2008
).
37.
M. A.
Rohrdanz
and
J. M.
Herbert
,
J. Chem. Phys.
129
,
034107
(
2008
).
38.
Y.
Akinaga
and
S.
Ten-no
,
Chem. Phys. Lett.
462
,
348
(
2008
).
39.
J.-W.
Song
,
M. A.
Watson
,
A.
Nakata
, and
K.
Hirao
,
J. Chem. Phys.
129
,
184113
(
2008
).
40.
M. A.
Rohrdanz
,
K. M.
Martins
, and
J. M.
Herbert
,
J. Chem. Phys.
130
,
054112
(
2009
).
41.
Y.
Akinaga
and
S.
Ten-no
,
Int. J. Quantum Chem.
109
,
1905
(
2009
).
42.
J.-W.
Song
,
M. A.
Watson
, and
K.
Hirao
,
J. Chem. Phys.
131
,
144108
(
2009
).
43.
R.
Peverati
and
D. G.
Truhlar
,
J. Phys. Chem. Lett.
2
,
2810
(
2011
).
44.
K. A.
Nguyen
,
P. N.
Day
, and
R.
Pachter
,
J. Chem. Phys.
135
,
074109
(
2011
).
45.
Y.-S.
Lin
,
C.-W.
Tsai
,
G.-D.
Li
, and
J.-D.
Chai
,
J. Chem. Phys.
136
,
154109
(
2012
).
46.
E.
Rebolini
,
A.
Savin
, and
J.
Toulouse
, “
Electronic excitations from a linear-response range-separated hybrid scheme
” (unpublished).
47.
J. G.
Ángyán
,
I. C.
Gerber
,
A.
Savin
, and
J.
Toulouse
,
Phys. Rev. A
72
,
012510
(
2005
).
48.
J.
Toulouse
,
F.
Colonna
, and
A.
Savin
,
Phys. Rev. A
70
,
062505
(
2004
).
49.
J.
Toulouse
,
F.
Colonna
, and
A.
Savin
,
J. Chem. Phys.
122
,
014110
(
2005
).
50.
J.
Toulouse
,
F.
Colonna
, and
A.
Savin
,
Mol. Phys.
103
,
2725
(
2005
).
51.
K.
Pernal
,
J. Chem. Phys.
136
,
184105
(
2012
).
52.
E.
Fromager
,
S.
Knecht
, and
H. J. A.
Jensen
,
J. Chem. Phys.
138
,
084101
(
2013
).
53.
J. N.
Byrd
,
R.
Côté
, and
J. A.
Montgomery
 Jr.
,
J. Chem. Phys.
135
,
244307
(
2011
).
54.
A. D.
Dwyer
, Ph.D. dissertation,
Durham University
, Durham,
2011
.
55.
M. E.
Casida
, in
Recent Advances in Density Functional Methods, Part I
, edited by
D. P.
Chong
(
World Scientific
,
Singapore
,
1995
), p.
155
.
56.
A.
Derevianko
,
S. G.
Porsev
, and
J. F.
Babb
,
At. Data Nucl. Data Tables
96
,
323
(
2010
).
57.
59.
F.
Reiche
and
W.
Thomas
,
Z. Phys.
34
,
510
(
1925
).
60.
F.
Furche
,
J. Chem. Phys.
114
,
5982
(
2001
).
61.
62.
A. D.
McLachlan
and
M. A.
Ball
,
Rev. Mod. Phys.
36
,
844
(
1964
).
63.
R. A.
Harris
,
J. Chem. Phys.
50
,
3947
(
1969
).
64.
C.
Jamorski
,
M. E.
Casida
, and
D. R.
Salahub
,
J. Chem. Phys.
104
,
5134
(
1996
).
65.
H.-J.
Werner
,
P. J.
Knowles
,
G.
Knizia
,
F. R.
Manby
,
M.
Schütz
 et al., MOLPRO, version 2012.1, a package of ab initio programs,
2012
, see http://www.molpro.net.
66.
67.
J. P.
Perdew
and
Y.
Wang
,
Phys. Rev. B
45
,
13244
(
1992
).
68.
S.
Paziani
,
S.
Moroni
,
P.
Gori-Giorgi
, and
G. B.
Bachelet
,
Phys. Rev. B
73
,
155111
(
2006
).
69.
J.
Toulouse
,
W.
Zhu
,
J. G.
Ángyán
, and
A.
Savin
,
Phys. Rev. A
82
,
032502
(
2010
).
70.
J.
Toulouse
,
W.
Zhu
,
A.
Savin
,
G.
Jansen
, and
J. G.
Ángyán
,
J. Chem. Phys.
135
,
084119
(
2011
).
71.
D.
Woon
and
T.
Dunning
,
J. Chem. Phys.
100
,
2975
(
1994
).
72.
D.
Woon
and
T.
Dunning
,
J. Chem. Phys.
103
,
4572
(
1995
).
73.
K. A.
Peterson
and
T. H.
Dunning
 Jr.
,
J. Chem. Phys.
117
,
10548
(
2002
).
74.
N. J.
DeYonker
,
K. A.
Peterson
, and
A. K.
Wilson
,
J. Phys. Chem. A
111
,
11383
(
2007
).
75.
B. P.
Prascher
,
D. E.
Woon
,
K. A.
Peterson
,
T. H.
Dunning
 Jr.
, and
A. K.
Wilson
,
Theor. Chem. Acc.
128
,
69
(
2011
).
76.
J.
Koput
and
K. A.
Peterson
,
J. Phys. Chem. A
106
,
9595
(
2002
).
77.
A.
Tkatchenko
and
M.
Scheffler
,
Phys. Rev. Lett.
102
,
073005
(
2009
).
78.
G. D.
Zeiss
and
W. J.
Meath
,
Mol. Phys.
33
,
1155
(
1977
).
79.
D. J.
Margoliash
and
W. J.
Meath
,
J. Chem. Phys.
68
,
1426
(
1978
).
80.
T. H.
Dunning
,
J. Chem. Phys.
90
,
1007
(
1989
).
81.
R. A.
Kendall
,
T. H.
Dunning
, and
R. J.
Harrison
,
J. Chem. Phys.
96
,
6796
(
1992
).
82.
D.
Woon
and
T.
Dunning
,
J. Chem. Phys.
98
,
1358
(
1993
).
83.
A.
Wilson
,
D.
Woon
,
K.
Peterson
, and
T. H.
Dunning
,
J. Chem. Phys.
110
,
7667
(
1999
).
84.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
85.
V.
Barone
and
C.
Adamo
,
Chem. Phys. Lett.
224
,
432
(
1994
).
86.
P. J.
Stephens
,
F. J.
Devlin
,
C. F.
Chabalowski
, and
M. J.
Frisch
,
J. Phys. Chem.
98
,
11623
(
1994
).
87.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
 et al., GAUSSIAN 09, Revision A.1, Gaussian Inc., Wallingford, CT,
2009
.
88.
A.
Görling
,
H. H.
Heinze
, and
M.
Levy
,
J. Mol. Struct.: THEOCHEM
501–502
,
271
(
2000
).
89.
A.
Szabo
and
N. S.
Ostlund
,
J. Chem. Phys.
67
,
4351
(
1977
).
90.
E.
Engel
and
A. F.
Bonetti
,
Int. J. Mod. Phys. B
15
,
1703
(
2001
).
91.
E.
Engel
, in
A Primer in Density Functional Theory
,
Lecture Notes in Physics
Vol.
620
, edited by
C.
Fiolhais
,
F.
Nogueira
, and
M. A. L.
Marques
(
Springer
,
Berlin
,
2003
), pp.
56
122
.
92.
E.
Zaremba
and
W.
Kohn
,
Phys. Rev. B
13
,
2270
(
1976
).
93.
Y.
Dmitriev
and
G.
Peinel
,
Int. J. Quantum Chem.
19
,
763
(
1981
).
94.
R.
McWeeny
,
Croat. Chem. Acta
57
,
865
(
1984
).
95.
R.
McWeeny
,
Methods of Molecular Quantum Mechanics
, 2nd ed. (
Academic Press
,
London
,
1992
).
96.
J. F.
Dobson
, in
Topics in Condensed Matter Physics
, edited by
M. P.
Das
(
Nova Science Publishers
,
New York
,
1994
), pp.
121
142
;
97.
J. F.
Dobson
,
K.
McLennan
,
A.
Rubio
,
J.
Wang
,
T.
Gould
,
H. M.
Le
, and
B. P.
Dinte
,
Aust. J. Chem.
54
,
513
(
2001
).
98.
A. E.
Hansen
and
T. D.
Bouman
,
Mol. Phys.
37
,
1713
(
1979
).
99.
R. A.
Harris
,
A. E.
Hansen
, and
T. D.
Bouman
,
J. Chem. Phys.
91
,
5856
(
1989
).
100.
G.
Strinati
,
Riv. Nuovo Cimento
11
,
1
(
1988
).
101.
R.
van Leeuwen
and
N. E.
Dahlen
, in “
The Electron Liquid Paradigm in Condensed Matter Physics
,”
Proceedings of the International School of Physics “Enrico Fermi” Vol. 157
, edited by
G. F.
Giuliani
and
G.
Vignale
(
IOS Press
,
Amsterdam
,
2004
).
102.
D. J.
Rowe
,
Rev. Mod. Phys.
40
,
153
(
1968
).
103.
T.
Helgaker
,
P.
Jørgensen
, and
J.
Olsen
,
Molecular Electronic-Structure Theory
(
Wiley
,
Chichester
,
2002
).
You do not currently have access to this content.