The irreversible return of a supercooled liquid to stable thermodynamic equilibrium often begins as a fast process which adiabatically drives the system to solid-liquid coexistence. Only at a later stage will solidification proceed with the expected exchange of thermal energy with the external bath. In this paper we discuss some aspects of the adiabatic freezing of metastable water at constant pressure. In particular, we investigated the thermal behavior of the isobaric gap between the molar volume of supercooled water and that of the warmer ice-water mixture which eventually forms at equilibrium. The available experimental data at ambient pressure, extrapolated into the metastable region within the scheme provided by the reference IAPWS-95 formulation, show that water ordinarily expands upon (partially) freezing under isenthalpic conditions. However, the same scheme also suggests that, for increasing undercoolings, the volume gap is gradually reduced and eventually vanishes at a temperature close to the currently estimated homogeneous ice nucleation temperature. This behavior is contrasted with that of substances which do not display a volumetric anomaly. The effect of increasing pressures on the alleged volume crossover from an expanded to a contracted ice-water mixture is also discussed.

1.
M.
Chaplin
, Water Structure and Science, see http://www.lsbu.ac.uk/water/.
2.
P. G.
Debenedetti
,
J. Phys.: Condens. Matter
15
,
R1669
(
2003
).
3.
P. G.
Debenedetti
,
Metastable Liquids – Concepts and Principles
(
Princeton University Press
,
Princeton, NJ
,
1996
).
4.
M. C.
D'Antonio
, “
A thermodynamic investigation of tensile instabilities and sub-triple liquids
,” Ph.D. dissertation (
Princeton University
, Princeton, NJ,
1989
).
5.
H. R.
Pruppacher
and
J.
Klett
,
Microphysics of Clouds and Precipitation
(
Springer
,
New York
,
1997
).
6.
M. E.
Glicksman
,
Principles of Solidification
(
Springer
,
Berlin
,
2010
).
7.
P. W.
Bridgman
,
The Nature of Thermodynamics
(
Gloucester, Mass., P. Smith
,
1969
), pp.
174
175
.
8.
W.
Wagner
and
A.
Pruss
,
J. Phys. Chem. Ref. Data
31
,
387
(
2002
).
9.
G.
Schubert
and
R. E.
Lingenfelter
,
Science
168
,
469
(
1970
).
10.
J. P.
Hindmarsh
,
A. B.
Russell
, and
X. D.
Chen
,
Int. J. Heat Mass Transfer
46
,
1199
(
2003
).
11.
J. P.
Hindmarsh
,
D. I.
Wilson
, and
M. L.
Johns
,
Int. J. Heat Mass Transfer
48
,
1017
(
2005
).
12.
V.
Holten
,
C. E.
Bertrand
,
M. A.
Anisimov
, and
J. V.
Sengers
,
J. Chem. Phys.
136
,
094507
(
2012
).
13.
R.
Feistel
and
W.
Wagner
,
J. Phys. Chem. Ref. Data
35
,
1021
(
2006
).
14.
C. A.
Angell
,
M.
Ogunl
, and
W. J.
Sichina
,
J. Phys. Chem.
86
,
998
(
1982
).
15.
D. G.
Archer
and
R. W.
Carter
,
J. Phys. Chem. B
104
,
8563
(
2000
).
16.
B. M.
Cwilong
,
Proc. R. Soc. London, Ser. A
190
,
137
(
1947
).
17.
S. C.
Mossop
,
Proc. Phys. Soc. London, Sect. B
68
,
193
(
1955
).
18.
H.
Kanno
,
R. J.
Speedy
, and
C. A.
Angell
,
Science
189
,
880
(
1975
).
19.
E. B.
Moore
and
V.
Molinero
,
Nature (London)
479
,
506
(
2011
).
20.
S. S.
Chang
and
B.
Bestul
,
J. Chem. Phys.
56
,
503
(
1972
).
21.
M.
Naoki
and
S.
Koeda
,
J. Phys. Chem
93
,
948
(
1989
).
22.
L.
Comez
,
S.
Corezzi
, and
D.
Fioretto
,
Philos. Mag.
84
,
1521
(
2004
).
23.
J. G.
Arentsen
and
J. C.
Van Miltenburg
,
J. Chem. Thermodyn.
4
,
789
(
1972
).
24.
N. Q.
Hien
,
A. B.
Ponter
, and
W.
Peier
,
J. Chem. Eng. Data
23
,
54
(
1978
).
25.
A.
Daanoun
,
C. F.
Tejero
, and
M.
Baus
,
Phys. Rev. E
50
,
2913
(
1994
).
26.
T.
Coussaert
and
M.
Baus
,
Phys. Rev. E
52
,
862
(
1995
).
27.
S.
Prestipino
,
J. Chem. Phys.
138
,
164501
(
2013
).
28.
S.
Prestipino
,
F.
Saija
, and
P. V.
Giaquinta
,
Phys. Rev. E
71
,
050102
(R) (
2005
).
29.
S.
Prestipino
,
F.
Saija
, and
P. V.
Giaquinta
,
Phys. Rev. Lett.
106
,
235701
(
2011
).
30.
S.
Prestipino
,
C.
Speranza
, and
P. V.
Giaquinta
,
Soft Matter
8
,
11708
(
2012
).
31.
C.
Speranza
,
S.
Prestipino
, and
P. V.
Giaquinta
,
Mol. Phys.
109
,
3001
(
2011
).
32.
G.
Malescio
and
F.
Saija
,
J. Phys. Chem. B
115
,
14091
(
2011
).
33.
G.
Malescio
,
S.
Prestipino
, and
F.
Saija
,
Mol. Phys.
109
,
2837
(
2011
).
34.
F.
Saija
,
S.
Prestipino
, and
G.
Malescio
,
Phys. Rev. E
80
,
031502
(
2009
).
35.
S.
Prestipino
,
F.
Saija
, and
G.
Malescio
,
J. Chem. Phys.
133
,
144504
(
2010
).
36.
S.
Prestipino
,
F.
Saija
, and
P. V.
Giaquinta
,
J. Chem. Phys.
137
,
104503
(
2012
).
37.
W.
Kauzmann
,
Chem. Rev.
43
,
219
(
1948
).
38.
R. J.
Speedy
,
P. G.
Debenedetti
,
R. S.
Smith
,
C.
Huang
, and
B. D.
Kay
,
J. Chem. Phys.
105
,
240
(
1996
).
39.
R. J.
Speedy
,
Biophys. Chem.
105
,
411
(
2003
).
40.
H.-J.
Hoffmann
,
Glass Sci. Technol.
78
,
218
(
2005
).
41.
H.-J.
Hoffmann
,
Mat.-wiss. u. Werkstofftech
43
,
528
(
2012
).
42.
S.
Singh
,
M. D.
Ediger
, and
J. J.
de Pablo
,
Nature Mater.
12
,
139
(
2013
).
You do not currently have access to this content.