In large photosynthetic chromophore-protein complexes not all chromophores are coupled strongly, and thus the situation is well described by formation of delocalized states in certain domains of strongly coupled chromophores. In order to describe excitation energy transfer among different domains without performing extensive numerical calculations, one of the most popular techniques is a generalization of Förster theory to multichromophoric aggregates (generalized Förster theory) proposed by Sumi [J. Phys. Chem. B103, 252 (1999)

] and Scholes and Fleming [J. Phys. Chem. B104, 1854 (2000)]. The aim of this paper is twofold. In the first place, by means of analytic continuation and a time convolutionless quantum master equation approach, a theory of emission lineshape of multichromophoric systems or molecular aggregates is proposed. In the second place, a comprehensive framework that allows for a clear, compact, and effective study of the multichromophoric approach in the full general version proposed by Jang, Newton, and Silbey [Phys. Rev. Lett.92, 218301 (2004)] is developed. We apply the present theory to simple paradigmatic systems and we show on one hand the effectiveness of time-convolutionless techniques in deriving lineshape operators and on the other hand we show how the multichromophoric approach can give significant improvements in the determination of energy transfer rates in particular when the systems under study are not the purely Förster regime. The presented scheme allows for an effective implementation of the multichromophoric Förster approach which may be of use for simulating energy transfer dynamics in large photosynthetic aggregates, for which massive computational resources are usually required. Furthermore, our method allows for a systematic comparison of multichromophoric Föster and generalized Förster theories and for a clear understanding of their respective limits of validity.

1.
G. R.
Fleming
and
R.
van Grondelle
,
Curr. Opin. Struct. Biol.
7
,
738
(
1997
).
2.
H.
van Amerongen
,
L.
Valkunas
, and
R.
van Grondelle
,
Photosynthetic Excitons
(
World Scientific
,
Singapore
,
2000
).
3.
R. E.
Blankenship
,
Molecular Mechanisms of Photosynthesis
(
World Scientific
,
London
,
2002
).
4.
T.
Brixner
,
J.
Stenger
,
H. M.
Vaswani
,
M.
Cho
,
R. E.
Blankenship
, and
G. R.
Fleming
,
Nature (London)
434
,
625
(
2005
).
5.
G. S.
Engel
,
T. R.
Calhoun
,
E. L.
Read
,
T. K.
Ahn
,
T.
Mančal
,
Y.-C.
Cheng
,
R. E.
Blankenship
, and
G. R.
Fleming
,
Nature (London)
446
,
782
(
2007
).
6.
H.
Lee
,
Y.-C.
Cheng
, and
G. R.
Fleming
,
Science
316
,
1462
(
2007
).
7.
A.
Ishizaki
and
G. R.
Fleming
,
Proc. Natl. Acad. Sci. U.S.A.
106
,
17255
(
2009
).
8.
T. R.
Calhoun
,
N. S.
Ginsberg
,
G. S.
Schlau-Cohen
,
Y.-C.
Cheng
,
M.
Ballottari
,
R.
Bassi
, and
G. R.
Fleming
,
J. Phys. Chem. B
113
,
16291
(
2009
).
9.
J. M.
Womick
and
A. M.
Moran
,
J. Phys. Chem. B
113
,
15747
(
2009
).
10.
E.
Collini
,
C. Y.
Wong
,
K. E.
Wilk
,
P. M. G.
Curmi
,
P.
Brumer
, and
G. D.
Scholes
,
Nature (London)
463
,
644
(
2010
).
11.
G.
Panitchayangkoon
,
D.
Hayes
,
K. A.
Fransted
,
J. R.
Caram
,
E.
Harel
,
J.
Wen
,
R. E.
Blankenship
, and
G. S.
Engel
,
Proc. Natl. Acad. Sci. U.S.A.
107
,
12766
(
2010
).
12.
K.
Lewis
and
J.
Ogilvie
,
J. Phys. Chem. Lett.
3
,
503
(
2012
).
13.
G. S.
Schlau-Cohen
,
A.
Ishizaki
,
T. R.
Calhoun
,
N. S.
Ginsberg
,
M.
Ballottari
,
R.
Bassi
, and
G. R.
Fleming
,
Nat. Chem.
4
,
389
(
2012
).
14.
C. Y.
Wong
,
R. M.
Alvey
,
D. B.
Turner
,
K. E.
Wilk
,
D. A.
Bryant
,
P. M. G.
Curmi
,
R. J.
Silbey
, and
G. D.
Scholes
,
Nat. Chem.
4
,
396
(
2012
).
15.
S.
Westenhoff
,
D.
Paleček
,
P.
Edlund
,
P.
Smith
, and
D.
Zigmantas
,
J. Am. Chem. Soc.
134
,
16484
(
2012
).
16.
A.
Olaya-Castro
,
C. F.
Lee
,
F. F.
Olsen
, and
N. F.
Johnson
,
Phys. Rev. B
78
,
085115
(
2008
).
17.
M.
Mohseni
,
P.
Rebentrost
,
S.
Lloyd
, and
A.
Aspuru-Guzik
,
J. Chem. Phys.
129
,
174106
(
2008
).
18.
M. B.
Plenio
and
S. F.
Huelga
,
New J. Phys.
10
,
113019
(
2008
).
19.
S.
Jang
,
Y.-C.
Cheng
,
D. R.
Reichman
, and
J. D.
Eaves
,
J. Chem. Phys.
129
,
101104
(
2008
).
20.
P.
Rebentrost
,
M.
Mohseni
,
I.
Kassal
,
S.
Lloyd
, and
A.
Aspuru-Guzik
,
New J. Phys.
11
,
033003
(
2009
).
21.
F.
Caruso
,
A. W.
Chin
,
A.
Datta
,
S. F.
Huelga
, and
M. B.
Plenio
,
J. Chem. Phys.
131
,
105106
(
2009
).
22.
A.
Ishizaki
and
G. R.
Fleming
,
J. Chem. Phys.
130
,
234111
(
2009
).
23.
J.
Cao
and
R. J.
Silbey
,
J. Phys. Chem. A
113
,
13825
(
2009
).
24.
J.
Strümpfer
and
K.
Schulten
,
J. Chem. Phys.
131
,
225101
(
2009
).
25.
A.
Nemeth
,
F.
Milota
,
T.
Mančal
,
V.
Lukeš
,
J.
Hauer
,
H. F.
Kauffmann
, and
J.
Sperling
,
J. Chem. Phys.
132
,
184514
(
2010
).
26.
T.
Mančal
,
A.
Nemeth
,
F.
Milota
,
V.
Lukeš
,
H. F.
Kauffmann
, and
J.
Sperling
,
J. Chem. Phys.
132
,
184515
(
2010
).
27.
M.
Sarovar
,
A.
Ishizaki
,
G. R.
Fleming
, and
K. B.
Whaley
,
Nat. Phys.
6
,
462
(
2010
).
28.
G.
Tao
and
W. H.
Miller
,
J. Phys. Chem. Lett.
1
,
891
(
2010
).
29.
P.
Huo
and
D. F.
Coker
,
J. Chem. Phys.
133
,
184108
(
2010
).
30.
S.
Hoyer
,
M.
Sarovar
, and
K. B.
Whaley
,
New J. Phys.
12
,
065041
(
2010
).
31.
A. W.
Chin
,
A.
Datta
,
F.
Caruso
,
S. F.
Huelga
, and
M. B.
Plenio
,
New J. Phys.
12
,
065002
(
2010
).
32.
J.
Prior
,
A. W.
Chin
,
S. F.
Huelga
, and
M. B.
Plenio
,
Phys. Rev. Lett.
105
,
050404
(
2010
).
33.
J.
Wu
,
F.
Liu
,
Y.
Shen
,
J.
Cao
, and
R. J.
Silbey
,
New J. Phys.
12
,
105012
(
2010
).
34.
G. D.
Scholes
,
G. R.
Fleming
,
A.
Olaya-Castro
, and
R.
van Grondelle
,
Nat. Chem.
3
,
763
(
2011
).
35.
D. B.
Turner
,
K. E.
Wilk
,
P. M. G.
Curmi
, and
G. D.
Scholes
,
J. Phys. Chem. Lett.
2
,
1904
(
2011
).
36.
P.
Giorda
,
S.
Garnerone
,
P.
Zanardi
, and
S.
Lloyd
, preprint arXiv:1106.1986 [quant-ph] (
2011
).
37.
N.
Christensson
,
F.
Milota
,
J.
Hauer
,
J.
Sperling
,
O.
Bixner
,
A.
Nemeth
, and
H. F.
Kauffmann
,
J. Phys. Chem. B
115
,
5383
(
2011
).
38.
N.
Renaud
,
M. A.
Ratner
, and
V.
Mujica
,
J. Chem. Phys.
135
,
075102
(
2011
).
39.
P.
Nalbach
,
A.
Ishizaki
,
G. R.
Fleming
, and
M.
Thorwart
,
New J. Phys.
13
,
063040
(
2011
).
40.
A.
Ishizaki
and
G. R.
Fleming
,
J. Phys. Chem. B
115
,
6227
(
2011
).
41.
A.
Kelly
and
Y. M.
Rhee
,
J. Phys. Chem. Lett.
2
,
808
(
2011
).
42.
G.
Ritschel
,
J.
Roden
,
W. T.
Strunz
,
A.
Aspuru-Guzik
, and
A.
Eisfeld
,
J. Phys. Chem. Lett.
2
,
2912
(
2011
).
43.
A.
Olaya-Castro
and
G. D.
Scholes
,
Int. Rev. Phys. Chem.
30
,
49
(
2011
).
44.
J.
Moix
,
J.
Wu
,
P.
Huo
,
D.
Coker
, and
J.
Cao
,
J. Phys. Chem. Lett.
2
,
3045
(
2011
).
45.
T.
Scholak
,
F.
de Melo
,
T.
Wellens
,
F.
Mintert
, and
A.
Buchleitner
,
Phys. Rev. E
83
,
021912
(
2011
).
46.
C.
Kreisbeck
,
T.
Kramer
,
M.
Rodríguez
, and
B.
Hein
,
J. Chem. Theory Comput.
7
,
2166
(
2011
).
47.
C.
Olbrich
,
J.
Strümpfer
,
K.
Schulten
, and
U.
Kleinekathöfer
,
J. Phys. Chem. Lett.
2
,
1771
(
2011
).
48.
D. B.
Turner
,
R.
Dinshaw
,
K.-K.
Lee
,
M. S.
Belsley
,
K. E.
Wilk
,
P. M. G.
Curmi
, and
G. D.
Scholes
,
Phys. Chem. Chem. Phys.
14
,
4857
(
2012
).
49.
F.
Fassioli
,
A.
Olaya-Castro
, and
G. D.
Scholes
,
J. Phys. Chem. Lett.
3
,
3136
3142
(
2012
).
50.
P.
Brumer
and
M.
Shapiro
,
Proc. Natl. Acad. Sci. U.S.A.
109
,
19575
(
2012
).
51.
A.
Ishizaki
and
G. R.
Fleming
,
Annu. Rev. Condens. Matter Phys.
3
,
333
(
2012
).
52.
T. C.
Berkelbach
,
T. E.
Markland
, and
D. R.
Reichman
,
J. Chem. Phys.
136
,
084104
(
2012
).
53.
S.
Hoyer
,
A.
Ishizaki
, and
K. B.
Whaley
,
Phys. Rev. E
86
,
041911
(
2012
).
54.
S.
Shim
,
P.
Rebentrost
,
S.
Valleau
, and
A.
Aspuru-Guzik
,
Biophys. J.
102
,
649
(
2012
).
55.
A.
Shabani
,
M.
Mohseni
,
H.
Rabitz
, and
S.
Lloyd
,
Phys. Rev. E
86
,
011915
(
2012
).
56.
S.
Jang
and
Y.-C.
Cheng
,
WIREs Comput. Mol. Sci.
3
,
84
(
2013
).
57.
H.-T.
Chang
and
Y.-C.
Cheng
,
J. Chem. Phys.
137
,
165103
(
2012
).
58.
M.
Sarovar
and
K. B.
Whaley
,
New J. Phys.
15
,
013030
(
2013
).
59.
A. G.
Redfield
,
IBM J. Res. Dev.
1
,
19
(
1957
).
60.
W. M.
Zhang
,
T.
Meier
,
V.
Chernyak
, and
S.
Mukamel
,
J. Chem. Phys.
108
,
7763
(
1998
).
61.
M.
Yang
and
G. R.
Fleming
,
Chem. Phys.
282
,
163
(
2002
).
62.
T.
Renger
and
R. A.
Marcus
,
J. Phys. Chem. A
107
,
8404
(
2003
).
63.
T.
Förster
,
Ann. Phys. (Berlin)
437
,
55
(
1948
).
64.
H.
Sumi
,
J. Phys. Chem. B
103
,
252
(
1999
).
65.
K.
Mukai
,
S.
Abe
, and
H.
Sumi
,
J. Phys. Chem. B
103
,
6096
(
1999
).
66.
G. D.
Scholes
and
G. R.
Fleming
,
J. Phys. Chem. B
104
,
1854
(
2000
).
67.
G. D.
Scholes
,
X. J.
Jordanides
, and
G. R.
Fleming
,
J. Phys. Chem. B
105
,
1640
(
2001
).
68.
S.
Jang
,
M. D.
Newton
, and
R. J.
Silbey
,
Phys. Rev. Lett.
92
,
218301
(
2004
).
69.
A. L.
Rogach
,
T. A.
Klar
,
J. M.
Lupton
,
A.
Meijerink
, and
J.
Feldmann
,
J. Mater. Chem.
19
,
1208
(
2009
).
70.
S. A.
Crooker
,
J. A.
Hollingsworth
,
S.
Tretiak
, and
V. I.
Klimov
,
Phys. Rev. Lett.
89
,
186802
(
2002
).
72.
E.
Emelianova
,
S.
Athanasopoulos
,
R.
Silbey
, and
D.
Beljonne
,
Phys. Rev. Lett.
104
,
206405
(
2010
).
73.
E.
Collini
and
G. D.
Scholes
,
Science
323
,
369
(
2009
).
74.
J.
Gierschner
,
Phys. Chem. Chem. Phys.
14
,
13146
(
2012
).
75.
J.
Megow
,
B.
Röder
,
A.
Kulesza
,
V.
Bonačić-Koutecký
, and
V.
May
,
ChemPhysChem
12
,
645
(
2011
).
76.
S.
Buhbut
,
S.
Itzhakov
,
E.
Tauber
,
M.
Shalom
,
I.
Hod
,
T.
Geiger
,
Y.
Garini
,
D.
Oron
, and
A.
Zaban
,
ACS Nano
4
,
1293
(
2010
).
77.
G.
Raszewski
and
T.
Renger
,
J. Am. Chem. Soc.
130
,
4431
(
2008
).
78.
F.
Shibata
,
Y.
Takahashi
, and
N.
Hashitsume
,
J. Stat. Phys.
17
,
171
(
1977
).
79.
T.
Renger
and
R. A.
Marcus
,
J. Chem. Phys.
116
,
9997
(
2002
).
80.
S.
Mukamel
,
Principles of Nonlinear Optical Spectroscopy
(
Oxford University Press
,
New York
,
1995
).
81.
V.
May
and
O.
Kühn
,
Charge and Energy Transfer Dynamics in Molecular Systems
, 2nd ed. (revised and enlarged edition) (
Wiley-VCH
,
Weinheim
,
2004
).
82.
A.
Ishizaki
,
T. R.
Calhoun
,
G. S.
Schlau-Cohen
, and
G. R.
Fleming
,
Phys. Chem. Chem. Phys.
12
,
7319
(
2010
).
83.
T.
Renger
,
M.
Madjet
,
A.
Knorr
, and
F.
Müh
,
J. Plant Physiol.
168
,
1497
(
2011
).
84.
G. R.
Fleming
and
M.
Cho
,
Annu. Rev. Phys. Chem.
47
,
109
(
1996
).
85.
G.
Renger
 et al,
Primary Processes of Photosynthesis: Principles and Apparatus
(
Royal Society of Chemistry
,
2007
).
86.
T.
Takagahara
,
E.
Hanamura
, and
R.
Kubo
,
J. Phys. Soc. Jpn.
43
,
811
(
1977
).
87.
Y.
Tanimura
and
R.
Kubo
,
J. Phys. Soc. Jpn.
58
,
101
(
1989
).
88.
Y.
Tanimura
,
J. Phys. Soc. Jpn.
75
,
082001
(
2006
).
89.
R.-X.
Xu
and
Y.
Yan
,
Phys. Rev. E
75
,
031107
(
2007
).
90.
S.
Jang
and
R. J.
Silbey
,
J. Chem. Phys.
118
,
9324
(
2003
).
91.
S.
Jang
and
R. J.
Silbey
,
J. Chem. Phys.
118
,
9312
(
2003
).
92.
M.
Wendling
,
T.
Pullerits
,
M. A.
Przyjalgowski
,
S. I. E.
Vulto
,
T. J.
Aartsma
,
R.
van Grondelle
, and
H.
van Amerongen
,
J. Phys. Chem. B
104
,
5825
(
2000
).
93.
J.
Adolphs
and
T.
Renger
,
Biophys. J.
91
,
2778
(
2006
).
94.
H.-P.
Breuer
and
F.
Petruccione
,
The Theory of Open Quantum Systems
(
Oxford University Press
,
New York
,
2002
).
95.
S.
Nakajima
,
Prog. Theor. Phys.
20
,
948
(
1958
).
96.
R.
Zwanzig
,
J. Chem. Phys.
33
,
1338
(
1960
).
97.
R.
Kubo
,
J. Math. Phys.
4
,
174
(
1963
).
98.
R. F.
Fox
,
J. Math. Phys.
17
,
1148
(
1976
).
100.
F.
Shibata
and
T.
Arimitsu
,
J. Phys. Soc. Jpn.
49
,
891
(
1980
).
101.
102.
A.
Ishizaki
and
Y.
Tanimura
,
Chem. Phys.
347
,
185
(
2008
).
You do not currently have access to this content.