We present an efficient algorithm for one- and two-component relativistic exact-decoupling calculations. Spin-orbit coupling is thus taken into account for the evaluation of relativistically transformed (one-electron) Hamiltonian. As the relativistic decoupling transformation has to be evaluated with primitive functions, the construction of the relativistic one-electron Hamiltonian becomes the bottleneck of the whole calculation for large molecules. For the established exact-decoupling protocols, a minimal matrix operation count is established and discussed in detail. Furthermore, we apply our recently developed local DLU scheme [D. Peng and M. Reiher, J. Chem. Phys.136, 244108 (2012)] https://doi.org/10.1063/1.4729788 to accelerate this step. With our new implementation two-component relativistic density functional calculations can be performed invoking the resolution-of-identity density-fitting approximation and (Abelian as well as non-Abelian) point group symmetry to accelerate both the exact-decoupling and the two-electron part. The capability of our implementation is illustrated at the example of silver clusters with up to 309 atoms, for which the cohesive energy is calculated and extrapolated to the bulk.

1.
K.
Dyall
and
K.
Faegri
,
Introduction to Relativistic Quantum Chemistry
(
Oxford University Press
,
2007
).
2.
P.
Pyykkö
,
Chem. Soc. Rev.
37
,
1967
(
2008
).
3.
M.
Reiher
and
A.
Wolf
,
Relativistic Quantum Chemistry
(
Wiley-VCH
,
Weinheim
,
2009
).
4.
M.
Barysz
,
Two-Component Relativistic Theories
,
Challenges and Advances in Computational Chemistry and Physics
, Vol.
10
(
Springer
,
Dordrecht
,
2010
).
7.
J.
Autschbach
,
J. Chem. Phys.
136
,
150902
(
2012
).
8.
R.
Mastalerz
and
M.
Reiher
,
Relativistic Electronic Structure Theory for Molecular Spectroscopy
(
Wiley
,
Chichester
,
2011
), pp.
405
442
.
9.
D.
Wang
,
W. F.
van Gunsteren
, and
Z.
Chai
,
Chem. Soc. Rev.
41
,
5836
(
2012
).
11.
P.
Schwerdtfeger
, Relativity and Chemical Bonding, The Chemical Bond, edited by
G.
Frenking
and
S.
Shaik
(Wiley-VCH, Weinheim, in press).
12.
13.
G.
Jansen
and
B. A.
Hess
,
Phys. Rev. A
39
,
6016
(
1989
).
14.
L. L.
Foldy
and
S. A.
Wouthuysen
,
Phys. Rev.
78
,
29
(
1950
).
15.
M.
Douglas
and
N. M.
Kroll
,
Ann. Phys. (N.Y.)
82
,
89
(
1974
).
16.
T.
Nakajima
and
K.
Hirao
,
Chem. Phys. Lett.
329
,
511
(
2000
).
17.
T.
Nakajima
and
K.
Hirao
,
J. Chem. Phys.
113
,
7786
(
2000
).
18.
A.
Wolf
,
M.
Reiher
, and
B. A.
Hess
,
J. Chem. Phys.
117
,
9215
(
2002
).
19.
C.
van Wüllen
,
J. Chem. Phys.
120
,
7307
(
2004
).
20.
M.
Reiher
and
A.
Wolf
,
J. Chem. Phys.
121
,
2037
(
2004
).
21.
M.
Reiher
and
A.
Wolf
,
J. Chem. Phys.
121
,
10945
(
2004
).
22.
A.
Wolf
and
M.
Reiher
,
J. Chem. Phys.
124
,
064102
(
2006
).
23.
A.
Wolf
and
M.
Reiher
,
J. Chem. Phys.
124
,
064103
(
2006
).
24.
M.
Reiher
and
A.
Wolf
,
Phys. Lett. A
360
,
603
(
2007
).
25.
D.
Peng
and
K.
Hirao
,
J. Chem. Phys.
130
,
044102
(
2009
).
26.
C.
Chang
,
M.
Pelissier
, and
P.
Durand
,
Phys. Scr.
34
,
394
(
1986
).
27.
E.
van Lenthe
,
E. J.
Baerends
, and
J. G.
Snijders
,
J. Chem. Phys.
99
,
4597
(
1993
).
28.
E.
van Lenthe
,
E. J.
Baerends
, and
J. G.
Snijders
,
J. Chem. Phys.
101
,
9783
(
1994
).
29.
J.
Autschbach
,
S.
Patchkovskii
, and
B.
Pritchard
,
J. Chem. Theory Comput.
7
,
2175
(
2011
).
30.
F.
Aquino
,
N.
Govind
, and
J.
Autschbach
,
J. Chem. Theory Comput.
7
,
3278
(
2011
).
31.
J.
Autschbach
,
Coord. Chem. Rev.
251
,
1796
(
2007
).
32.
M.
Barysz
,
A. J.
Sadlej
, and
J. G.
Snijders
,
Int. J. Quantum Chem.
65
,
225
(
1997
).
33.
M.
Barysz
and
A. J.
Sadlej
,
J. Mol. Struct.: THEOCHEM
573
,
181
(
2001
).
34.
M.
Barysz
and
A. J.
Sadlej
,
J. Chem. Phys.
116
,
2696
(
2002
).
35.
D.
Kȩdziera
and
M.
Barysz
,
Chem. Phys. Lett.
446
,
176
(
2007
).
36.
J.-L.
Heully
,
I.
Lindgren
,
E.
Lindroth
,
S.
Lundqvist
, and
A.-M.
Mårtensson-Pendrill
,
J. Phys. B
19
,
2799
(
1986
).
37.
J.
Seino
and
M.
Hada
,
Chem. Phys. Lett.
461
,
327
(
2008
).
38.
J.
Seino
and
M.
Hada
,
J. Chem. Phys.
132
,
174105
(
2010
).
39.
J.
Seino
,
W.
Uesugi
, and
M.
Hada
,
J. Chem. Phys.
132
,
164108
(
2010
).
40.
K. G.
Dyall
,
J. Chem. Phys.
106
,
9618
(
1997
).
41.
K. G.
Dyall
,
J. Chem. Phys.
109
,
4201
(
1998
).
42.
K. G.
Dyall
and
T.
Enevoldsen
,
J. Chem. Phys.
111
,
10000
(
1999
).
43.
K. G.
Dyall
,
J. Chem. Phys.
115
,
9136
(
2001
).
44.
K. G.
Dyall
,
J. Comput. Chem.
23
,
786
(
2002
).
45.
M.
Filatov
and
D.
Cremer
,
J. Chem. Phys.
119
,
11526
(
2003
).
46.
H. J. A.
Jensen
,
Lecture at the REHE 2005 Conference
,
Mülheim, Germany
, April,
2005
.
47.
M.
Filatov
and
D.
Cremer
,
J. Chem. Phys.
122
,
064104
(
2005
).
48.
W.
Kutzelnigg
and
W.
Liu
,
J. Chem. Phys.
123
,
241102
(
2005
).
49.
W.
Kutzelnigg
and
W.
Liu
,
Mol. Phys.
104
,
2225
(
2006
).
50.
W.
Liu
and
D.
Peng
,
J. Chem. Phys.
125
,
044102
(
2006
).
51.
M.
Filatov
and
K. G.
Dyall
,
Theor. Chem. Acc.
117
,
333
(
2007
).
52.
W.
Liu
and
W.
Kutzelnigg
,
J. Chem. Phys.
126
,
114107
(
2007
).
53.
M.
Iliaš
and
T.
Saue
,
J. Chem. Phys.
126
,
064102
(
2007
).
54.
D.
Peng
,
W.
Liu
,
Y.
Xiao
, and
L.
Cheng
,
J. Chem. Phys.
127
,
104106
(
2007
).
55.
W.
Liu
and
D.
Peng
,
J. Chem. Phys.
131
,
031104
(
2009
).
56.
J.
Sikkema
,
L.
Visscher
,
T.
Saue
, and
M.
Iliaš
,
J. Chem. Phys.
131
,
124116
(
2009
).
57.
R.
Mastalerz
,
G.
Barone
,
R.
Lindh
, and
M.
Reiher
,
J. Chem. Phys.
127
,
074105
(
2007
).
58.
B. A.
Hess
and
C. M.
Marian
, in
Computational Molecular Spectroscopy
, edited by
P.
Jensen
and
P. R.
Bunker
(
John Wiley & Sons Ltd.
,
Chichester
,
2000
), p.
169
.
59.
A.
Wolf
,
M.
Reiher
, and
B. A.
Hess
,
Transgressing Theory Boundaries: The Generalized Douglas–Kroll Transformation
(
World Scientific Publishing
,
Singapore
,
2004
), pp.
137
190
.
60.
M.
Reiher
,
Theor. Chem. Acc.
116
,
241
(
2006
).
61.
T.
Nakajima
and
K.
Hirao
,
Chem. Rev.
112
,
385
(
2012
).
62.
M.
Reiher
,
WIREs Comput. Mol. Sci.
2
,
139
(
2012
).
63.
D.
Peng
and
M.
Reiher
,
Theor. Chem. Acc.
131
,
1081
(
2012
).
64.
K. G.
Dyall
,
J. Chem. Phys.
100
,
2118
(
1994
).
65.
Y. S.
Lee
and
A. D.
McLean
,
J. Chem. Phys.
76
,
735
(
1982
).
66.
R. E.
Stanton
and
S.
Havriliak
,
J. Chem. Phys.
81
,
1910
(
1984
).
67.
W.
Kutzelnigg
,
Int. J. Quantum Chem.
25
,
107
(
1984
).
68.
K. G.
Dyall
,
I. P.
Grant
, and
S.
Wilson
,
J. Phys. B
17
,
493
(
1984
).
69.
70.
D.
Peng
and
M.
Reiher
,
J. Chem. Phys.
136
,
244108
(
2012
).
71.
J.
Autschbach
,
D.
Peng
, and
M.
Reiher
,
J. Chem. Theory Comput.
8
,
4239
(
2012
).
72.
D.
Peng
,
J.
Ma
, and
W.
Liu
,
Int. J. Quantum Chem.
109
,
2149
(
2009
).
73.
D.
Peng
and
K.
Hirao
,
Theor. Chem. Acc.
129
,
517
(
2011
).
74.
J. E.
Peralta
and
G. E.
Scuseria
,
J. Chem. Phys.
120
,
5875
(
2004
).
75.
J. E.
Peralta
,
J.
Uddin
, and
G. E.
Scuseria
,
J. Chem. Phys.
122
,
084108
(
2005
).
76.
J.
Thar
and
B.
Kirchner
,
J. Chem. Phys.
130
,
124103
(
2009
).
77.
J.
Seino
and
H.
Nakai
,
J. Chem. Phys.
136
,
244102
(
2012
).
78.
J.
Seino
and
H.
Nakai
,
J. Chem. Phys.
137
,
144101
(
2012
).
79.
TURBOMOLE is a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989–2007, TURBOMOLE GmbH, since
2007
; available from http://www.turbomole.com.
80.
R.
Ahlrichs
and
K.
May
,
Phys. Chem. Chem. Phys.
2
,
943
(
2000
).
81.
D.
Figgen
,
G.
Rauhut
,
M.
Dolg
, and
H.
Stoll
,
Chem. Phys.
311
,
227
(
2005
).
82.
F.
Weigend
and
A.
Baldes
,
J. Chem. Phys.
133
,
174102
(
2010
).
83.
F.
Weigend
,
M.
Kattannek
, and
R.
Ahlrichs
,
J. Chem. Phys.
130
,
164106
(
2009
).
84.
See http://www.cosmologic.de/basis-sets/basissets.php for the Ag SVPalls1 auxiliary basis sets.
85.
F.
Weigend
,
Phys. Chem. Chem. Phys.
8
,
1057
(
2006
).
86.
See supplementary material at http://dx.doi.org/10.1063/1.4803693 for SV(P) basis sets for X2C, reference basis sets, RI-J auxiliary basis set, and coordinates for Ag13, Ag55, Ag147, Ag309.
87.
A. D.
Becke
,
Phys. Rev. A
38
,
3098
(
1988
).
88.
J. P.
Perdew
,
Phys. Rev. B
33
,
8822
(
1986
).
89.
O.
Treutler
and
R.
Ahlrichs
,
J. Chem. Phys.
102
,
346
(
1995
).
90.
J.
Tao
,
J. P.
Perdew
,
V.
Staroverov
, and
G.
Scuseria
,
Phys. Rev. Lett.
91
,
146401
(
2003
).
91.
R.
Schumm
,
D.
Wagman
,
S.
Bailey
,
W.
Evans
, and
V.
Parker
, National Bureau of Standards (USA) Technical Notes 270-4 (
1973
).
92.
P.
Nava
,
M.
Sierka
, and
R.
Ahlrichs
,
Phys. Chem. Chem. Phys.
5
,
3372
(
2003
).
93.
B. O.
Roos
,
R.
Lindh
,
P.-Å.
Malmqvist
,
V.
Veryazov
, and
P.-O.
Widmark
,
J. Phys. Chem. A
109
,
6575
(
2005
).
94.
B. O.
Roos
,
R.
Lindh
,
P.-Å.
Malmqvist
,
V.
Veryazov
, and
P.-O.
Widmark
,
Chem. Phys. Lett.
409
,
295
(
2005
).
95.
B. O.
Roos
,
R.
Lindh
,
P.-Å.
Malmqvist
,
V.
Veryazov
,
P.-O.
Widmark
, and
A. C.
Borin
,
J. Phys. Chem. A
112
,
11431
(
2008
).

Supplementary Material

You do not currently have access to this content.