Analytic energy gradients for the orbital-optimized second-order Møller–Plesset perturbation theory (OMP2) are presented. The OMP2 method is applied to difficult chemical systems, including those where spatial or spin symmetry-breaking instabilities are observed. The performance of the OMP2 method is compared with that of second-order Møller–Plesset perturbation theory (MP2) for investigating geometries and vibrational frequencies of the cis-HOOH+, trans-HOOH+, LiO2,

${\rm C}_{3}^{+}$
C3+⁠, and NO2 molecules. For harmonic vibrational frequencies, the OMP2 method eliminates the singularities arising from the abnormal response contributions observed for MP2 in case of symmetry-breaking problems, and provides significantly improved vibrational frequencies for the above molecules. We also consider the hydrogen transfer reactions between several free radicals, for which MP2 provides poor reaction energies. The OMP2 method again exhibits a considerably better performance than MP2, providing a mean absolute error of 2.3 kcal mol−1, which is more than 5 times lower than that of MP2 (13.2 kcal mol−1). Overall, the OMP2 method seems quite helpful for electronically challenging chemical systems such as symmetry-breaking molecules, hydrogen transfer reactions, or other cases where standard MP2 proves unreliable. For such systems, we recommend using OMP2 instead of MP2 as a more robust method with the same computational scaling.

1.
C. D.
Sherrill
,
A. I.
Krylov
,
E. F. C.
Byrd
, and
M.
Head-Gordon
,
J. Chem. Phys.
109
,
4171
(
1998
).
2.
A. I.
Krylov
,
C. D.
Sherrill
,
E. F. C.
Byrd
, and
M.
Head-Gordon
,
J. Chem. Phys.
109
,
10669
(
1998
).
3.
A. I.
Krylov
,
C. D.
Sherrill
, and
M.
Head-Gordon
,
J. Chem. Phys.
113
,
6509
(
2000
).
4.
S. R.
Gwaltney
,
C. D.
Sherrill
,
M.
Head-Gordon
, and
A. I.
Krylov
,
J. Chem. Phys.
113
,
3548
(
2000
).
5.
T. B.
Pedersen
,
H.
Koch
, and
C.
Hättig
,
J. Chem. Phys.
110
,
8318
(
1999
).
6.
T. B.
Pedersen
,
B.
Fernández
, and
H.
Koch
,
J. Chem. Phys.
114
,
6983
(
2001
).
7.
U.
Bozkaya
,
J. M.
Turney
,
Y.
Yamaguchi
,
H. F.
Schaefer
, and
C. D.
Sherrill
,
J. Chem. Phys.
135
,
104103
(
2011
).
8.
U.
Bozkaya
,
J. Chem. Phys.
135
,
224103
(
2011
).
9.
J. F.
Stanton
,
J.
Gauss
, and
R. J.
Bartlett
,
J. Chem. Phys.
97
,
5554
(
1992
).
10.
E. R.
Davidson
and
W. T.
Borden
,
J. Phys. Chem.
87
,
4783
(
1983
).
11.
W. D.
Allen
,
D. A.
Horner
,
R. L.
DeKock
,
R. B.
Remington
, and
H. F.
Schaefer
,
Chem. Phys.
133
,
11
(
1989
).
12.
R. S.
Grev
,
I. L.
Alberts
, and
H. F.
Schaefer
,
J. Phys. Chem.
94
,
3379
(
1990
).
13.
Y.
Xie
,
W. D.
Allen
,
Y.
Yamaguchi
, and
H. F.
Schaefer
,
J. Chem. Phys.
104
,
7615
(
1996
).
14.
N. A.
Burton
,
Y.
Yamaguchi
,
I. L.
Alberts
, and
H. F.
Schaefer
,
J. Chem. Phys.
95
,
7466
(
1991
).
15.
T. D.
Crawford
,
J. F.
Stanton
,
W. D.
Allen
, and
H. F.
Schaefer
,
J. Chem. Phys.
107
,
10626
(
1997
).
16.
P. Y.
Ayala
and
H. B.
Schlegel
,
J. Chem. Phys.
108
,
7560
(
1998
).
17.
N. J.
Russ
,
T. D.
Crawford
, and
G. S.
Tschumper
,
J. Chem. Phys.
120
,
7298
(
2004
).
18.
B.
Mintz
and
T. D.
Crawford
,
Phys. Chem. Chem. Phys.
12
,
15459
(
2010
).
19.
W.
Kurlancheek
and
M.
Head-Gordon
,
Mol. Phys.
107
,
1223
(
2009
).
20.
G. D.
Purvis
and
R. J.
Bartlett
,
J. Chem. Phys.
76
,
1910
(
1982
).
21.
G. E.
Scuseria
and
H. F.
Schaefer
,
Chem. Phys. Lett.
142
,
354
(
1987
).
22.
N. C.
Handy
and
H. F.
Schaefer
,
J. Chem. Phys.
81
,
5031
(
1984
).
23.
U.
Bozkaya
and
H. F.
Schaefer
,
J. Chem. Phys.
136
,
204114
(
2012
).
24.
R. C.
Lochan
and
M.
Head-Gordon
,
J. Chem. Phys.
126
,
164101
(
2007
).
25.
S.
Grimme
,
J. Chem. Phys.
118
,
9095
(
2003
).
26.
S.
Grimme
,
J. Comput. Chem.
24
,
1529
(
2003
).
27.
S.
Grimme
,
WIREs Comput. Mol. Sci.
2
,
886
(
2012
).
28.
M.
Gerenkamp
and
S.
Grimme
,
Chem. Phys. Lett.
392
,
229
(
2004
).
29.
Y.
Jung
,
R. C.
Lochan
,
A. D.
Dutoi
, and
M.
Head-Gordon
,
J. Chem. Phys.
121
,
9793
(
2004
).
30.
W.
Kurlancheek
,
K.
Lawler
,
R. C.
Lochan
, and
M.
Head-Gordon
,
J. Chem. Phys.
136
,
054113
(
2012
).
31.
F.
Neese
,
T.
Schwabe
,
S.
Kossmann
,
B.
Schirmer
, and
S.
Grimme
,
J. Chem. Theory Comput.
5
,
3060
(
2009
).
32.
L.
Adamowicz
and
R. J.
Bartlett
,
J. Chem. Phys.
86
,
6314
(
1987
).
33.
L.
Adamowicz
,
R. J.
Bartlett
, and
A. J.
Sadlej
,
J. Chem. Phys.
88
,
5749
(
1988
).
34.
L.
Adamowicz
and
R. J.
Bartlett
,
Phys. Rev. A
37
,
1
(
1988
).
35.
36.
E.
Soydaş
and
U.
Bozkaya
,
J. Chem. Theory Comput.
9
,
1452
(
2013
).
37.
J. M.
Turney
,
A. C.
Simmonett
,
R. M.
Parrish
,
E. G.
Hohenstein
,
F.
Evangelista
,
J. T.
Fermann
,
B. J.
Mintz
,
L. A.
Burns
,
J. J.
Wilke
,
M. L.
Abrams
,
N. J.
Russ
,
M. L.
Leininger
,
C. L.
Janssen
,
E. T.
Seidl
,
W. D.
Allen
,
H. F.
Schaefer
,
R. A.
King
,
E. F.
Valeev
,
C. D.
Sherrill
, and
T. D.
Crawford
,
WIREs Comput. Mol. Sci.
2
(
4
),
556
(
2011
).
38.
J. F.
Stanton
,
J.
Gauss
,
J. D.
Watts
, and
R. J.
Bartlett
,
J. Chem. Phys.
94
,
4334
(
1991
).
39.
T. D.
Crawford
and
H. F.
Schaefer
,
Rev. Comput. Chem.
14
,
33
(
2000
).
40.
I.
Shavitt
and
R. J.
Bartlett
,
Many-Body Methods in Chemistry and Physics
, 1st ed. (
Cambridge Press
,
New York
,
2009
), pp.
54
89
.
41.
F. E.
Harris
,
H. J.
Monkhorst
, and
D. L.
Freeman
,
Algebraic and Diagrammatic Methods in Many-Fermion Theory
, 1st ed. (
Oxford Press
,
New York
,
1992
), pp.
88
118
.
42.
E.
Dalgaard
and
P.
Jørgensen
,
J. Chem. Phys.
69
,
3833
(
1978
).
43.
T.
Helgaker
,
P.
Jørgensen
, and
J.
Olsen
,
Molecular Electronic Structure Theory
, 1st ed. (
John Wiley & Sons
,
New York
,
2000
), pp.
496
504
.
44.
R.
Shepard
,
Adv. Chem. Phys.
69
,
63
(
1987
).
45.
R.
Shepard
,
Modern Electronic Structure Theory Part I
, 1st ed.,
Advanced Series in Physical Chemistry
Vol.
2
, edited by
D. R.
Yarkony
(
World Scientific Publishing Company
,
London
,
1995
), pp.
345
458
.
46.
T. U.
Helgaker
and
J.
Almlöf
,
Int. J. Quantum Chem.
26
,
275
(
1984
).
47.
T. U.
Helgaker
, in
Geometrical Derivatives of Energy Surfaces and Molecular Properties
, edited by
P.
Jørgensen
, and
J.
Simons
(
Springer
,
Dordrecht
,
1986
), pp.
1
16
.
48.
T.
Helgaker
and
P.
Jørgensen
,
Adv. Quantum Chem.
19
,
183
(
1988
).
49.
J.
Simons
,
T. U.
Helgaker
, and
P.
Jørgensen
,
Chem. Phys.
86
,
413
(
1984
).
50.
T.
Helgaker
, in
The Encyclopedia of Computational Chemistry
, edited by
P. R.
Schleyer
,
N. L.
Allinger
,
T.
Clark
,
J.
Gasteiger
,
P. A.
Kollman
,
H. F.
Schaefer
, and
P. R.
Schreiner
(
Wiley
,
Chichester
,
1998
), pp.
1157
1169
.
51.
Y.
Yamaguchi
,
Y.
Osamura
,
J. D.
Goddard
, and
H. F.
Schaefer
,
A New Dimension to Quantum Chemistry: Analytic Derivative Methods in Ab Initio Molecular Electronic Structure Theory
(
Oxford University Press
,
New York
,
1994
), pp.
29
52
.
52.
P.
Jørgensen
and
T.
Helgaker
,
J. Chem. Phys.
89
,
1560
(
1988
).
53.
T.
Helgaker
,
P.
Jørgensen
, and
N.
Handy
,
Theor. Chim. Acc.
76
,
227
(
1989
).
54.
T.
Helgaker
and
P.
Jørgensen
,
Theor. Chim. Acc.
75
,
111
(
1989
).
55.
J. E.
Rice
and
R. D.
Amos
,
Chem. Phys. Lett.
122
,
585
(
1985
).
56.
Y.
Yamaguchi
and
H. F.
Schaefer
, in
Handbook of High-Resolution Spectroscopies
, edited by
M.
Quack
and
F.
Merkt
(
John Wiley & Sons
,
2011
), pp.
325
362
.
57.
S.
Saebø
,
J.
Baker
,
K.
Wolinski
, and
P.
Pulay
,
J. Chem. Phys.
120
,
11423
(
2004
).
58.
59.
K.
Raghavachari
,
G. W.
Trucks
,
J. A.
Pople
, and
M.
Head-Gordon
,
Chem. Phys. Lett.
157
,
479
(
1989
).
60.
G. E.
Scuseria
,
A. C.
Scheiner
,
T. J.
Lee
,
J. E.
Rice
, and
H. F.
Schaefer
,
J. Chem. Phys.
86
,
2881
(
1987
).
61.
G. E.
Scuseria
,
C. L.
Janssen
, and
H. F.
Schaefer
,
J. Chem. Phys.
89
,
7382
(
1988
).
62.
G. E.
Scuseria
and
H. F.
Schaefer
,
J. Chem. Phys.
90
,
3700
(
1989
).
63.
P. J.
Knowles
,
C.
Hampel
, and
H.-J.
Werner
,
J. Chem. Phys.
99
,
5219
(
1993
).
64.
H.-J.
Werner
,
P. J.
Knowles
,
G.
Knizia
,
F. R.
Manby
,
M.
Schütz
 et al, MOLPRO, version 2010.1, a package of ab initio programs,
2010
, see http://www.molpro.net.
65.
T. H.
Dunning
,
J. Chem. Phys.
90
,
1007
(
1989
).
66.
D. E.
Woon
and
T. H.
Dunning
,
J. Chem. Phys.
103
,
4572
(
1995
).
67.
X.
Zhang
,
A. T.
Maccarone
,
M. R.
Nimlos
,
S.
Kato
,
V. M.
Bierbaum
,
G. B.
Ellison
,
B.
Ruscic
,
A. C.
Simmonett
,
W. D.
Allen
, and
H. F.
Schaefer
,
J. Chem. Phys.
126
,
044312
(
2007
).
68.
K. L.
Bak
,
J.
Gauss
,
P.
Jørgensen
,
J.
Olsen
,
T.
Helgaker
, and
J. F.
Stanton
,
J. Chem. Phys.
114
,
6548
(
2001
).
69.
U.
Bozkaya
,
J. M.
Turney
,
Y.
Yamaguchi
, and
H. F.
Schaefer
,
J. Chem. Phys.
132
,
064308
(
2010
).
70.
U.
Bozkaya
,
J. M.
Turney
,
Y.
Yamaguchi
, and
H. F.
Schaefer
,
J. Chem. Phys.
136
,
164303
(
2012
).
71.
X.
Wang
and
L.
Andrews
,
Mol. Phys.
107
,
739
(
2009
).
72.
G.
Herzberg
,
Molecular Spectra and Molecular Structure. Electronic Spectra and Electronic Structure of Polyatomic Molecules
(
Van Nostrand
,
New York
,
1966
), Vol.
3
.
73.
G.
Herzberg
,
Molecular Spectra and Molecular Structure. Infrared and Raman Spectra of Polyatomic Molecules
(
Van Nostrand
,
New York
,
1945
), Vol.
2
.
74.
T.
Shimanouchi
,
J. Phys. Chem. Ref. Data
1
,
189
(
1972
).
75.
B.
Temelso
,
C. D.
Sherrill
,
R. C.
Merkle
, and
R. A.
Freitas
,
J. Phys. Chem. A
110
,
11160
(
2006
).
76.
D.
Feller
,
J. Chem. Phys.
98
,
7059
(
1993
).
77.
T.
Helgaker
,
W.
Klopper
,
H.
Koch
, and
J.
Noga
,
J. Chem. Phys.
106
,
9639
(
1997
).
78.
A.
Halkier
,
T.
Helgaker
,
P.
Jørgensen
,
W.
Klopper
, and
J.
Olsen
,
Chem. Phys. Lett.
302
,
437
(
1999
).
You do not currently have access to this content.