We investigate the isotropic-to-nematic phase transition in systems of hard helical particles, using Onsager theory and Monte Carlo computer simulations. Motivation of this work resides in the ubiquity of the helical shape motif in many natural and synthetic polymers, as well as in the well known importance that the details of size and shape have in determining the phase behaviour and properties of (soft) condensed matter systems. We discuss the differences with the corresponding spherocylinder phase diagram and find that the helix parameters affect the phase behaviour and the existence of the nematic phase. We find that for high helicity Onsager theory significantly departs from numerical simulations even when a modified form of the Parsons-Lee rescaling is included to account for the non-convexity of particles.

1.
J. A.
Barker
and
D.
Henderson
,
Rev. Mod. Phys.
48
,
587
(
1976
).
2.
J. L.
Barrat
and
J. P.
Hansen
,
Basic Concepts for Simple and Complex Liquids
(
Cambridge University Press
,
Cambridge
,
2003
).
3.
M. N.
Rosenbluth
and
A. W.
Rosenbluth
,
J. Chem. Phys.
22
,
881
(
1954
);
B. J.
Alder
and
T. E.
Wainwright
,
J. Chem. Phys.
27
,
1208
(
1957
).
4.
5.
F. C.
Bawden
 et al,
Nature (London)
138
,
1051
(
1936
).
6.
D.
Frenkel
,
Theor. Chem. Acc.
103
,
212
(
2000
).
7.
M. P.
Allen
,
G. T.
Evans
,
D.
Frenkel
, and
B.
Mulder
,
Adv. Chem. Phys.
86
,
1
(
1993
).
8.
G. J.
Vroege
and
H. N. W.
Lekkerkerker
,
Rep. Prog. Phys.
55
,
1241
(
1992
).
9.
P.
Tarazona
,
J. A.
Cuesta
, and
Y.
Martinez-Raton
,
Lect. Notes Phys.
753
,
247
(
2008
).
10.
A.
Haji-Akbari
,
M.
Engel
,
A. S.
Keys
,
X.
Zheng
,
R. G.
Petschek
,
P.
Palffy-Muhoray
, and
S. C.
Glotzer
,
Nature (London)
462
,
773
(
2009
);
P.
Damasceno
,
M.
Engel
, and
S. C.
Glotzer
,
Science
337
,
453
(
2012
).
[PubMed]
11.
J.
de Graaf
,
R.
van Roij
, and
M.
Dijkstra
,
Phys. Rev. Lett.
107
,
155501
(
2011
).
12.
P. J.
Camp
,
M. P.
Allen
, and
A. J.
Masters
,
J. Chem. Phys.
111
,
9871
(
1999
).
13.
P. K.
Maiti
,
Y.
Lansac
,
M. A.
Glaser
, and
N. A.
Clark
,
Phys. Rev. Lett.
88
,
065504
(
2002
);
[PubMed]
P. K.
Maiti
,
Y.
Lansac
,
M. A.
Glaser
, and
N. A.
Clark
,
Phys. Rev. Lett.
92
,
025501
(
2004
).
[PubMed]
14.
G.
Cinacchi
and
J. S.
van Duijneveldt
,
J. Phys. Chem. Lett.
1
,
787
(
2010
).
15.
M.
Marechal
and
M.
Dijkstra
,
Phys. Rev. E
82
,
031405
(
2010
).
16.
C.
Robinson
,
Trans. Faraday Soc.
52
,
571
(
1956
).
17.
R.
Oldenbourg
,
X.
Wen
,
R. B.
Meyer
, and
D. L. D.
Caspar
,
Phys. Rev. Lett.
61
,
1851
(
1988
).
18.
F.
Livolant
and
A.
Leforestier
,
Prog. Polym. Sci.
21
,
1115
(
1996
).
19.
I. W.
Hamley
,
Soft Matter
6
,
1863
(
2010
).
20.
M.
Nakata
,
G.
Zanchetta
,
B. D.
Chapman
,
C. D.
Jones
,
J. O.
Cross
,
R.
Pindak
,
T.
Bellini
, and
N. A.
Clark
,
Science
318
,
1276
(
2007
).
21.
S.
Chandrasekhar
,
Liquid Crystals
(
Cambridge University Press
,
Cambridge
,
1992
).
22.
J. D.
Parsons
,
Phys. Rev. A
19
,
1225
(
1979
).
23.
S. D.
Lee
,
J. Chem. Phys.
87
,
4972
(
1987
);
S. D.
Lee
,
J. Chem. Phys.
89
,
7036
(
1988
).
24.
Note that a finite helix has C2 point symmetry, yet we have verified that the helices examined here have nearly uniaxial order (with the helix axis as the ordering axis) in the uniaxial nematic phase.
25.
S. C.
McGrother
,
D. C.
Williamson
, and
G.
Jackson
,
J. Chem. Phys.
104
,
6755
(
1996
).
26.
P. J.
Camp
,
C. P.
Mason
,
M. P.
Allen
,
A. A.
Khare
, and
D. A.
Kofke
,
J. Chem. Phys.
105
,
2837
(
1996
).
27.
N. F.
Carnahan
and
K. E.
Starling
,
J. Chem. Phys.
51
,
635
(
1969
).
28.
D. C.
Williamson
and
G.
Jackson
,
J. Chem. Phys.
108
,
10294
(
1998
).
29.
S.
Varga
and
I.
Szalai
,
Mol. Phys.
98
,
693
(
2000
).
30.
J. L. F.
Abascal
and
S.
Lago
,
J. Mol. Liq.
30
,
133
(
1985
).
31.
A. D.
Varshalovich
,
N. A.
Moskalev
, and
V. K.
Kersonskii
,
Quantum Theory of Angular Momentum
(
World Scientific
,
New York
,
1995
).
32.
H. F.
King
,
J. Chem. Phys.
57
,
1837
(
1972
).
33.
W. W.
Wood
and
J. D.
Jacobson
,
J. Chem. Phys.
27
,
1207
(
1957
).
34.
J. A.
Barker
and
R. O.
Watts
,
Chem. Phys. Lett.
3
,
144
(
1969
).
35.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids
(
Clarendon Press
,
Oxford
,
1987
).
36.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulation: From Algorithms to Applications
(
Academic
,
San Diego
,
2002
).
37.
C.
Vega
and
S.
Lago
,
Comput. Chem.
18
,
55
(
1994
).
38.
J.
Veillard-Baron
,
Mol. Phys.
28
,
809
(
1974
).
39.
W. H.
Press
,
B. P.
Flannery
,
S. A.
Teukolsky
, and
W. T.
Vettering
,
Numerical Recipes
(
Cambridge University Press
,
Cambridge
,
1986
).
40.
M. A.
Miller
,
L. M.
Amon
, and
W. P.
Reinhardt
,
Chem. Phys. Lett.
331
,
278
(
2000
).
41.
H.
Flyvbjerg
and
H. G.
Petersen
,
J. Chem. Phys.
91
,
461
(
1989
).
42.
A. T.
Gabriel
,
T.
Meyer
, and
G.
Germano
,
J. Chem. Theory Comput.
4
,
468
(
2008
), see http://qmga.sourceforge.net.
43.
M. F.
Sanner
,
A. J.
Olson
, and
J. C.
Spehner
,
Biopolymers
38
,
305
(
1996
).
44.
M. A.
Cotter
,
J. Chem. Phys.
66
,
1098
(
1977
).
45.
T.
Boublik
,
C.
Vega
, and
M.
Diazpena
,
J. Chem. Phys.
93
,
730
(
1990
).
46.
T.
Jiang
and
J.
Wu
,
J. Chem. Phys.
127
,
034902
(
2007
).
47.
C.
Vega
and
S.
Lago
,
J. Chem. Phys.
100
,
6727
(
1994
).
48.
M. S.
Wertheim
,
J. Chem. Phys.
85
,
2929
(
1986
).
49.
E.
Barry
,
Z.
Hensel
,
Z.
Dogic
,
M.
Shribak
, and
R.
Oldenbourg
,
Phys. Rev. Lett.
96
,
018305
(
2006
).
50.
$d_{cc}=\sqrt{(x_{i+1}-x_i)^2+(y_{i+1}-y_i)^2+(z_{i+1}-z_i)^2}$
dcc=(xi+1xi)2+(yi+1yi)2+(zi+1zi)2
is the distance between centres of two subsequent spheres.
You do not currently have access to this content.