Carbon nitride sheets are promising Pt replacement materials for cathode oxygen reduction catalysis. Using first principles calculations with a global optimization method, we search for the most stable structures of the monolayer carbon nitrides at various C:N ratios. The results show that the larger the ratio, the more energetically favorable the obtained structures, and the more preferably for the C, N atoms to assume sp2 configurations. A volcano shape is revealed for the curve of the representative O2 adsorption energies on the sheets vs. the ratios. In the ratio range of 2.0–3.0, the sheets not only have lower formation energies than the stable graphitic-C3N4, but also can potentially catalyze the oxygen reduction as efficiently as Pt.

1.
S.
Litster
and
G.
McLean
,
J. Power Sources
130
,
61
(
2004
).
2.
Y.-C.
Lu
,
Z.
Xu
,
H. A.
Gasteiger
,
S.
Chen
,
K.
Hamad-Schifferli
, and
Y.
Shao-Horn
,
J. Am. Chem. Soc.
132
,
12170
(
2010
).
3.
J.
Wu
,
J.
Zhang
,
Z.
Peng
,
S.
Yang
,
F. T.
Wagner
, and
H.
Yang
,
J. Am. Chem. Soc.
132
,
4984
(
2010
).
4.
L.
Wang
,
Y.
Nemoto
, and
Y.
Yamauchi
,
J. Am. Chem. Soc.
133
,
9674
(
2011
).
5.
J. W.
Hong
,
S. W.
Kang
,
B.-S.
Choi
,
D.
Kim
,
S. B.
Lee
, and
S. W.
Han
,
ACS Nano
6
,
2410
(
2012
).
6.
S.
Zuluaga
and
S.
Stolbov
,
J. Chem. Phys.
135
,
134702
(
2011
).
7.
X.
Yang
,
J.
Hu
,
J.
Fu
,
R.
Wu
, and
B. E.
Koel
,
Angew. Chem.
123
,
10364
(
2011
).
8.
K.
Gong
,
F.
Du
,
Z.
Xia
,
M.
Durstock
, and
L.
Dai
,
Science
323
,
760
(
2009
).
9.
L.
Qu
,
Y.
Liu
,
J.-B.
Baek
, and
L.
Dai
,
ACS Nano
4
,
1321
(
2010
).
10.
M.
Lefèvre
,
E.
Proietti
,
F.
Jaouen
, and
J.-P.
Dodelet
,
Science
324
,
71
(
2009
).
11.
G.
Wu
,
K. L.
More
,
C. M.
Johnston
, and
P.
Zelenay
,
Science
332
,
443
(
2011
).
12.
D. H.
Lee
,
W. J.
Lee
,
W. J.
Lee
,
S. O.
Kim
, and
Y.-H.
Kim
,
Phys. Rev. Lett.
106
,
175502
(
2011
).
13.
K. R.
Lee
,
K. U.
Lee
,
J. W.
Lee
,
B. T.
Ahn
, and
S. I.
Woo
,
Electrochem. Commun.
12
,
1052
(
2010
).
14.
H.
Niwa
,
K.
Horiba
,
Y.
Harada
,
M.
Oshima
,
T.
Ikeda
,
K.
Terkura
,
J.
Ozaki
, and
S.
Miyata
,
J. Power Sources
187
,
93
(
2009
).
15.
Y.
Feng
,
F.
Li
,
Z.
Hu
,
X.
Luo
,
L.
Zhang
,
X.-F.
Zhou
,
H.-T.
Wang
,
J.-J.
Xu
, and
E. G.
Wang
,
Phys. Rev. B
85
,
155454
(
2012
).
16.
S. M.
Lyth
,
Y.
Nabae
,
S.
Moriya
,
S.
Kuroki
,
M.
Kakimoto
,
J.
Ozaki
, and
S.
Miyata
,
J. Phys. Chem. C
113
,
20148
(
2009
).
17.
S.
Yang
,
X.
Feng
,
X.
Wang
, and
K.
Müllen
,
Angew. Chem., Int. Ed.
50
,
5339
(
2011
).
18.
Y.
Zheng
,
Y.
Jiao
,
J.
Chen
,
J.
Liu
,
J.
Liang
,
A.
Du
,
W.
Zhang
,
Z.
Zhu
,
S. C.
Smith
,
M.
Jaroniec
,
G. Q.
Lu
, and
S. Z.
Qiao
,
J. Am. Chem. Soc.
133
,
20116
(
2011
).
19.
Y.
Wang
,
J.
Lv
,
L.
Zhu
, and
Y.
Ma
,
Phys. Rev. B
82
,
094116
(
2010
).
20.
J.
Lv
,
Y.
Wang
,
L.
Zhu
, and
Y.
Ma
,
Phys. Rev. Lett.
106
,
015503
(
2011
).
21.
X.
Luo
,
J.
Yang
,
H.
Liu
,
X.
Wu
,
Y.
Wang
,
Y.
Ma
,
S.-H.
Wei
,
X.
Gong
, and
H.
Xiang
,
J. Am. Chem. Soc.
133
,
16285
(
2011
).
22.
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
47
,
558
(
1993
);
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
49
,
14251
(
1994
).
23.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
24.
A.
Togo
,
F.
Oba
, and
I.
Tanaka
,
Phys. Rev. B
78
,
134106
(
2008
).
25.
A.
Thomas
,
A.
Fischer
,
F.
Goettmann
,
M.
Antonietti
,
J.-O.
Müller
,
R.
Schlögl
, and
J. M.
Carlsson
,
J. Mater. Chem.
18
,
4893
(
2008
).
26.
L.-W.
Yin
,
Y.
Bando
,
M.-S.
Li
,
Y.-X.
Liu
, and
Y.-X.
Qi
,
Adv. Mater.
15
,
1840
(
2003
).
27.
J. K.
Nørskov
,
J.
Rossmeisl
,
A.
Logadottir
, and
L.
Lindqvist
,
J. Phys. Chem. B
108
,
17886
(
2004
).
28.
V.
Tripković
,
E.
Skúlason
,
S.
Siahrostami
,
J. K.
Nørskov
, and
J.
Rossmeisl
,
Electrochim. Acta
55
,
7975
(
2010
).
You do not currently have access to this content.