Ab initio electron propagator calculations in various self-energy approximations provide accurate assignments of peaks observed in the photoelectron spectra of complexes that comprise a fluoride or chloride anion and two or three water molecules. More than one minimum structure is found in all four cases. When the halide anion is Cl, the first three final states may be described as quasi-degenerate 2P chlorine atoms coordinated to water molecules. Higher final states consist of a chloride anion juxtaposed to a positive charge that is delocalized over the water molecules. For the clusters with fluoride anions, most of the final states correspond to Dyson orbitals that are delocalized over the F and O nuclei. A variety of F–O σ and π bonding and antibonding patterns are evident in the Dyson orbitals. The assignment of low-lying spectral peaks to halide p orbital vacancies or to delocalized solvent orbitals is more valid for the chloride clusters than for the fluoride clusters, where a delocalized picture arises from strong bonding interactions between F 2p and H2O 1b1 orbitals.

1.
W. H.
Robertson
and
M. A.
Johnson
,
Ann. Rev. Phys. Chem.
54
,
173
(
2003
).
2.
A.
Sanov
and
W. C.
Lineberger
,
Phys. Chem. Chem. Phys.
6
,
2018
(
2004
).
3.
M.
Mitsui
and
A.
Nakajima
,
Bull. Chem. Soc. Jpn.
80
,
1058
(
2007
).
4.
J.
Simons
,
J. Phys. Chem. A
112
,
6401
(
2008
).
5.
X.
Chen
and
S.
Bradforth
,
Ann. Rev. Phys. Chem.
59
,
203
(
2008
).
6.
J.
Baik
,
J.
Kim
,
D.
Majumdar
, and
K. S.
Kim
,
J. Chem. Phys.
110
,
9116
(
1999
).
7.
D.
Majumdar
,
J.
Kim
, and
K. S.
Kim
,
J. Chem. Phys.
112
,
101
(
2000
).
8.
J.
Kim
,
H. M.
Lee
,
S. B.
Suh
,
D.
Majumdar
, and
K. S.
Kim
,
J. Chem. Phys.
113
,
5259
(
2000
).
9.
J. E.
Combariza
and
N. R.
Kestner
,
J. Chem. Phys.
100
,
2851
(
1994
).
10.
J. E.
Combariza
and
N. R.
Kestner
,
J. Phys. Chem.
98
,
3513
(
1994
).
11.
D.
Serxner
,
C. E. H.
Dessent
, and
M.
Johnson
,
J. Chem. Phys.
105
,
7231
(
1996
).
12.
C. G.
Zhang
and
D. A.
Dixon
,
J. Phys. Chem. A
108
,
2020
(
2004
).
13.
D. A.
Kemp
and
M. S.
Gordon
,
J. Phys. Chem. A
109
,
7688
(
2005
).
14.
G.
Markovich
,
O.
Cheshnovsky
, and
U.
Kaldor
,
J. Chem. Phys.
99
,
6201
(
1993
).
15.
G.
Markovich
,
S.
Pollack
,
R.
Giniger
, and
O.
Cheshnovsky
,
J. Chem. Phys.
101
,
9344
(
1994
).
16.
U.
Kaldor
,
Z. Phys. D: At., Mol. Clusters
31
,
279
(
1994
).
17.
X.
Yang
,
X. B.
Wang
, and
L. S.
Wang
,
J. Chem. Phys.
115
,
2889
(
2001
).
18.
W.
von Niessen
,
J.
Schirmer
, and
L. S.
Cederbaum
,
Comput. Phys. Rep.
1
,
57
(
1984
).
19.
I. B.
Müller
and
L. S.
Cederbaum
,
J. Phys. Chem. A
109
,
10424
(
2005
).
20.
O.
Dolgounitcheva
,
V. G.
Zakrzewski
, and
J. V.
Ortiz
,
Int. J. Quantum Chem.
111
,
1701
(
2011
).
21.
S.
Canuto
,
K.
Coutinho
,
B. J. C.
Cabral
,
V. G.
Zakrzewski
, and
J. V.
Ortiz
,
J. Chem. Phys.
132
,
214507
(
2010
).
22.
O.
Dolgounitcheva
,
V. G.
Zakrzewski
, and
J. V.
Ortiz
,
Int. J. Quantum Chem.
112
,
3840
(
2012
).
23.
J. V.
Ortiz
,
Adv. Quantum Chem.
35
,
33
(
1999
).
24.
R.
Flores-Moreno
,
J.
Melin
,
O.
Dolgounitcheva
,
V. G.
Zakrzewski
, and
J. V.
Ortiz
,
Int. J. Quantum Chem.
110
,
706
(
2010
).
25.
V. G.
Zakrzewski
,
O.
Dolgounitcheva
,
A. V.
Zakjevskii
, and
J. V.
Ortiz
, in
Advances in Quantum Chemistry
, edited by
J. R.
Sabin
and
E.
Brändas
(
Elsevier
,
Amsterdam
,
2011
), Vol.
62
, p.
105
.
26.
J. V.
Ortiz
,
WIREs Comput. Mol. Sci.
3
,
123
(
2013
).
27.
N. C.
Handy
,
J. A.
Pople
,
M.
Head-Gordon
,
K.
Raghavachari
, and
G.
Trucks
,
Chem. Phys. Lett.
164
,
185
(
1989
);
C. E.
Dykstra
,
Chem. Phys. Lett.
45
,
466
(
1977
).
28.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
 et al, GAUSSIAN, Developers' Version, Revision H.01, Gaussian, Inc., Wallingford, CT,
2008
.
29.
R.
Krishnan
,
J. S.
Binkley
,
R.
Seeger
, and
J. A.
Pople
,
J. Chem. Phys.
72
,
650
(
1980
);
M. J.
Frisch
,
J. A.
Pople
, and
J. S.
Binkley
,
J. Chem. Phys.
80
,
3265
(
1984
).
30.
J. V.
Ortiz
in
Computational Chemistry: Reviews of Current Trends
, edited by
J.
Leszczynski
(
World Scientific
,
Singapore
,
1997
), Vol.
2
, p.
1
.
31.
J. V.
Ortiz
,
J. Chem. Phys.
104
,
7599
(
1996
).
32.
A. M.
Ferreira
,
G.
Seabra
,
O.
Dolgounitcheva
,
V. G.
Zakrzewski
, and
J. V.
Ortiz
, in
Quantum-Mechanical Prediction of Thermochemical Data
, edited by
J.
Cioslowski
(
Kluwer
,
Dordrecht
,
2001
), p.
131
.
33.
J. V.
Ortiz
,
Int. J. Quantum Chem.
105
,
803
(
2005
).
34.
G.
Schaftenaar
, MOLDEN, version 3.4, CAOS/CAMM Center, The Netherlands,
1998
.
You do not currently have access to this content.