We introduce a new paradigm for one-dimensional uniform electron gases (UEGs). In this model, n electrons are confined to a ring and interact via a bare Coulomb operator. We use Rayleigh-Schrödinger perturbation theory to show that, in the high-density regime, the ground-state reduced (i.e., per electron) energy can be expanded as

$\epsilon (r_s,n) = \epsilon _0(n) r_s^{-2} + \epsilon _1(n) r_s^{-1} + \epsilon _2(n) +\epsilon _3(n) r_s\break + \cdots\,$
ε(rs,n)=ε0(n)rs2+ε1(n)rs1+ε2(n)+ε3(n)rs+⁠, where rs is the Seitz radius. We use strong-coupling perturbation theory and show that, in the low-density regime, the reduced energy can be expanded as
$\epsilon (r_s,n) = \eta _0(n) r_s^{-1} + \eta _1(n) r_s^{-3/2}\break + \eta _2(n) r_s^{-2} + \cdots\,$
ε(rs,n)=η0(n)rs1+η1(n)rs3/2+η2(n)rs2+
. We report explicit expressions for ε0(n), ε1(n), ε2(n), ε3(n), η0(n), and η1(n) and derive the thermodynamic (large-n) limits of each of these. Finally, we perform numerical studies of UEGs with n = 2, 3, …, 10, using Hylleraas-type and quantum Monte Carlo methods, and combine these with the perturbative results to obtain a picture of the behavior of the new model over the full range of n and rs values.

1.
P. M. W.
Gill
and
P. F.
Loos
,
Theor. Chem. Acc.
131
,
1069
(
2012
).
2.
G. F.
Giuliani
and
G.
Vignale
,
Quantum Theory of the Electron Liquid
(
Cambridge University Press
,
Cambridge
,
2005
).
3.
P. F.
Loos
and
P. M. W.
Gill
,
Phys. Rev. B
83
,
233102
(
2011
).
4.
P. F.
Loos
and
P. M. W.
Gill
,
Phys. Rev. B
84
,
033103
(
2011
).
5.
R. G.
Parr
and
W.
Yang
,
Density Functional Theory for Atoms and Molecules
(
Oxford University Press
,
1989
).
6.
P. F.
Loos
and
P. M. W.
Gill
,
J. Chem. Phys.
135
,
214111
(
2011
).
7.
P. F.
Loos
and
P. M. W.
Gill
,
Phys. Rev. A
79
,
062517
(
2009
).
8.
P. F.
Loos
and
P. M. W.
Gill
,
Phys. Rev. Lett.
103
,
123008
(
2009
).
9.
P. F.
Loos
and
P. M. W.
Gill
,
Phys. Rev. A
81
,
052510
(
2010
).
10.
P. F.
Loos
,
Phys. Rev. A
81
,
032510
(
2010
).
11.
P. F.
Loos
and
P. M. W.
Gill
,
Mol. Phys.
108
,
2527
(
2010
).
12.
13.
F.
Pederiva
and
E.
Lipparini
,
Phys. Rev. B
66
,
165314
(
2002
).
14.
M.
Casula
,
S.
Sorella
, and
G.
Senatore
,
Phys. Rev. B
74
,
245427
(
2006
).
15.
R. M.
Lee
and
N. D.
Drummond
,
Phys. Rev. B
83
,
245114
(
2011
).
16.
17.
M. M.
Fogler
,
Phys. Rev. Lett.
94
,
056405
(
2005
).
18.
G. E.
Astrakharchik
and
M. D.
Girardeau
,
Phys. Rev. B
83
,
153303
(
2011
).
19.
P. F.
Loos
and
P. M. W.
Gill
,
Phys. Rev. Lett.
108
,
083002
(
2012
).
20.
T.
Kato
,
Commun. Pure Appl. Math.
10
,
151
(
1957
).
21.
M. D.
Girardeau
,
J. Math. Phys.
1
,
516
(
1960
).
22.
R. J.
Warburton
,
C.
Schäflein
,
D.
Haft
,
F.
Bickel
,
A.
Lorke
,
K.
Karrai
,
J. M.
Garcia
,
W.
Schoenfeld
, and
P. M.
Petroff
,
Nature (London)
405
,
926
(
2000
).
23.
A.
Fuhrer
,
S.
Luscher
,
T.
Ihn
,
T.
Heinzel
,
K.
Ensslin
,
W.
Wegscheider
, and
M.
Bichler
,
Nature (London)
413
,
822
(
2001
).
24.
A.
Lorke
,
R.
Johannes Luyken
,
A. O.
Govorov
,
J. P.
Kotthaus
,
J. M.
Garcia
, and
P. M.
Petroff
,
Phys. Rev. Lett.
84
,
2223
(
2000
).
25.
U. F.
Keyser
,
C.
Fuhner
,
S.
Borck
,
R. J.
Haug
,
M.
Bichler
,
G.
Abstreiter
, and
W.
Wegscheider
,
Phys. Rev. Lett.
90
,
196601
(
2003
).
26.
D.
Mailly
,
C.
Chapelier
, and
A.
Benoit
,
Phys. Rev. Lett.
70
,
2020
(
1993
).
27.
M.
Bayer
,
M.
Korkusinski
,
P.
Hawrylak
,
T.
Gutbrod
,
M.
Michel
, and
A.
Forchel
,
Phys. Rev. Lett.
90
,
186801
(
2003
).
28.
A.
Fuhrer
,
T.
Ihn
,
K.
Ensslin
,
W.
Wegscheider
, and
M.
Bichler
,
Phys. Rev. Lett.
93
,
176803
(
2004
).
29.
M.
Sigrist
,
A.
Fuhrer
,
T.
Ihn
,
K.
Ensslin
,
S. E.
Ulloa
,
W.
Wegscheider
, and
M.
Bichler
,
Phys. Rev. Lett.
93
,
066802
(
2004
).
30.
S.
Viefers
,
P.
Koskinen
,
P.
Singha Deo
, and
M.
Manninen
,
Physica E
21
,
1
(
2004
).
31.
M. M.
Fogler
and
E.
Pivovarov
,
Phys. Rev. B
72
,
195344
(
2005
).
32.
M. M.
Fogler
and
E.
Pivovarov
,
J. Phys.: Condens. Matter
18
,
L7
(
2006
).
33.
K.
Niemela
,
P.
Pietilainen
,
P.
Hyvonen
, and
T.
Chakraborty
,
Europhys. Lett.
36
,
533
(
1996
).
34.
S. S.
Gylfadottir
,
A.
Harju
,
T.
Jouttenus
, and
C.
Webb
,
New J. Phys.
8
,
211
(
2006
).
35.
A.
Emperador
,
F.
Pederiva
, and
E.
Lipparini
,
Phys. Rev. B
68
,
115312
(
2003
).
36.
A.
Emperador
,
M.
Pi
,
M.
Barranco
, and
E.
Lipparini
,
Phys. Rev. B
64
,
155304
(
2001
).
37.
E.
Räsänen
,
S.
Pittalis
,
C. R.
Proetto
, and
E. K. U.
Gross
,
Phys. Rev. B
79
,
121305
(
2009
).
38.
M.
Aichinger
,
S. A.
Chin
,
E.
Krotscheck
, and
E.
Räsänen
,
Phys. Rev. B
73
,
195310
(
2006
).
39.
M.
Manninen
and
S. M.
Reimann
,
J. Phys. A: Math. Theor.
42
,
214019
(
2009
).
40.
Y.
Aharonov
and
D.
Bohm
,
Phys. Rev.
115
,
485
(
1959
).
41.
A. G.
Aronov
and
Y. B.
Lyanda-Geller
,
Phys. Rev. Lett.
70
,
343
(
1993
).
42.
A. F.
Morpurgo
,
J. P.
Heida
,
T. M.
Klapwijk
,
B. J.
van Wees
, and
G.
Borghs
,
Phys. Rev. Lett.
80
,
1050
(
1998
).
43.
M.
Gell-Mann
and
K. A.
Brueckner
,
Phys. Rev.
106
,
364
(
1957
).
44.
45.
W. L.
McMillan
,
Phys. Rev.
138
,
A442
(
1965
).
46.
D.
Ceperley
,
G. V.
Chester
, and
M. H.
Kalos
,
Phys. Rev. B
16
,
3081
(
1977
).
47.
C. J.
Umrigar
, “
Variational Monte Carlo basics and application to atoms and molecules
,” in
Quantum Monte Carlo Methods in Physics and Chemistry
(
Kluwer Academic Press
,
Dordrecht
,
1999
), pp.
129
160
.
48.
M. H.
Kalos
,
D.
Levesque
, and
L.
Verlet
,
Phys. Rev. A
9
,
2178
(
1974
).
49.
D. M.
Ceperley
and
M. H.
Kalos
, “
Quantum many-body problems
,” in
Monte Carlo Methods in Statistical Physics
, edited by
K.
Binder
(
Springer-Verlag
,
Berlin
,
1979
).
50.
P. J.
Reynolds
,
D. M.
Ceperley
,
B. J.
Alder
, and
W. A.
Lester
, Jr.
,
J. Chem. Phys.
77
,
5593
(
1982
).
51.
53.
NIST Handbook of Mathematical Functions
, edited by
F. W. J.
Olver
,
D. W.
Lozier
,
R. F.
Boisvert
, and
C. W.
Clark
(
Cambridge University Press
,
New York
,
2010
).
54.
P. F.
Loos
,
J. Chem. Phys.
138
,
064108
(
2013
).
55.
A. K.
Rajagopal
and
J. C.
Kimball
,
Phys. Rev. B
15
,
2819
(
1977
).
56.
J. J.
Thomson
,
Philos. Mag. Ser. 6
7
,
237
(
1904
).
57.
P. F.
Loos
and
P. M. W.
Gill
,
Chem. Phys. Lett.
500
,
1
(
2010
).
58.
P. F.
Loos
and
P. M. W.
Gill
,
Phys. Rev. Lett.
105
,
113001
(
2010
).
59.
E. A.
Hylleraas
,
Z. Phys.
54
,
347
(
1929
).
60.
E. A.
Hylleraas
,
Z. Phys.
65
,
209
(
1930
).
61.
E. A.
Hylleraas
,
Adv. Quantum Chem.
1
,
1
(
1964
).
62.
63.
R. M.
Lee
,
G. J.
Conduit
,
N.
Nemec
,
P.
Lopez-Rios
, and
N. D.
Drummond
,
Phys. Rev. E
83
,
066706
(
2011
).
64.
J.
Kolorenc
and
L.
Mitas
,
Rep. Prog. Phys.
74
,
026502
(
2011
).
65.
C. J.
Umrigar
,
M. P.
Nightingale
, and
K. J.
Runge
,
J. Chem. Phys.
99
,
2865
(
1993
).
66.
C.-J.
Huang
,
C. J.
Umrigar
, and
M. P.
Nightingale
,
J. Chem. Phys.
107
,
3007
(
1997
).
67.
C. J.
Umrigar
and
C.
Filippi
,
Phys. Rev. Lett.
94
,
150201
(
2005
).
68.
J.
Toulouse
and
C. J.
Umrigar
,
J. Chem. Phys.
126
,
084102
(
2007
).
69.
E. Y.
Loh
,
J. E.
Gubernatis
,
R. T.
Scalettar
,
S. R.
White
,
D. J.
Scalapino
, and
R. L.
Sugar
,
Phys. Rev. B
41
,
9301
(
1990
).
70.
M.
Troyer
and
U.-J.
Wiese
,
Phys. Rev. Lett.
94
,
170201
(
2005
).
71.
C. J.
Umrigar
,
J.
Toulouse
,
C.
Filippi
,
S.
Sorella
, and
R. G.
Hennig
,
Phys. Rev. Lett.
98
,
110201
(
2007
).
72.
D. M.
Ceperley
,
J. Stat. Phys.
63
,
1237
(
1991
).
73.
R. J.
Needs
,
M. D.
Towler
,
N. D.
Drummond
, and
P.
Lopez-Rios
,
J. Phys.: Condensed Matter
22
,
023201
(
2010
).
74.
P. F.
Loos
,
C.
Ball
, and
P. M. W.
Gill
, “
Uniform electron gases. II. The generalized local density approximation in one dimension
,”
J. Chem. Phys.
(unpublished).
75.
N. G.
de Bruijn
,
Asymptotic Methods in Analysis
(
Dover
,
New York
,
1981
).
76.
D.
Knuth
,
The Art of Computer Programming
,
Fundamental Algorithms
Vol.
1
(
Addison-Wesley
,
Reading, MA
,
1969
).
You do not currently have access to this content.