The theory of two seemingly different quantum/classical approaches to collisional energy transfer and ro-vibrational energy flow is reviewed: a heuristic fluid-rotor method, introduced earlier to treat recombination reactions [M. Ivanov and D. Babikov, J. Chem. Phys.134, 144107 (2011) https://doi.org/10.1063/1.3576103], and a more rigorous method based on the Ehrenfest theorem. It is shown analytically that for the case of a diatomic molecule + quencher these two methods are entirely equivalent. Notably, they both make use of the average moment of inertia computed as inverse of average of inverse of the distributed moment of inertia. Despite this equivalence, each of the two formulations has its own advantages, and is interesting on its own. Numerical results presented here illustrate energy and momentum conservation in the mixed quantum/classical approach and open opportunities for computationally affordable treatment of collisional energy transfer.

1.
V.
Bernshtein
and
I.
Oref
,
Isr. J. Chem.
47
,
205
(
2008
).
2.
M.-L.
Dubernet
,
F.
Daniel
,
A.
Grosjean
, and
C. Y.
Lin
,
Astron. Astrophys.
497
,
911
(
2009
).
3.
F.
Daniel
,
M.-L.
Dubernet
,
F.
Pacaud
, and
A.
Grosjean
,
Astron. Astrophys.
517
,
A13
(
2010
).
4.
F.
Daniel
,
M.-L.
Dubernet
, and
A.
Grosjean
,
Astron. Astrophys.
536
,
A76
(
2011
).
5.
L.
Wiesenfeld
,
Y.
Scribano
, and
A.
Faure
,
Phys. Chem. Chem. Phys.
13
,
8230
(
2011
).
6.
C. H.
Yang
,
G.
Sarma
,
D. H.
Parker
,
J. J.
ter Meulen
, and
L.
Wiesenfeld
,
J. Chem. Phys.
134
,
204308
(
2011
).
7.
N.
Balakrishnan
,
A.
Dalgarno
, and
R. C.
Forrey
,
J. Chem. Phys.
113
,
621
(
2000
).
8.
C.
Cecchi-Pestellini
,
E.
Bodo
,
N.
Balakrishnan
, and
A.
Dalgarno
,
Astrophys. J.
571
,
1015
(
2002
).
9.
B.
Kendrick
and
R.
Pack
,
Chem. Phys. Lett.
235
,
291
(
1995
).
10.
R. T
Pack
,
R. B.
Walker
, and
B. K.
Kendrick
,
J. Chem. Phys.
109
,
6701
(
1998
).
11.
M.
Ivanov
and
D.
Babikov
,
J. Chem. Phys.
134
,
144107
(
2011
).
12.
M.
Ivanov
and
D.
Babikov
,
J. Chem. Phys.
134
,
174308
(
2011
).
13.
M.
Ivanov
and
D.
Babikov
,
J. Chem. Phys.
136
,
184304
(
2012
).
14.
M.
Tacconi
and
F. A.
Gianturco
,
J. Chem. Phys.
131
,
094301
(
2009
).
15.
N.
Balakrishnan
,
G.
Quéméner
,
R. C.
Forrey
,
R. J.
Hinde
, and
P. C.
Stancil
,
J. Chem. Phys.
134
,
014301
(
2011
).
16.
L. M. C.
Janssen
,
P. S.
Zuchowsky
,
A.
van der Avoird
,
J. M.
Hudson
, and
G. C.
Groenenboom
,
J. Chem. Phys.
134
,
124309
(
2011
).
17.
G.
Quéméner
,
N.
Balakrishnan
, and
B. K.
Kendrick
,
J. Chem. Phys.
129
,
224309
(
2008
).
18.
G. A.
Parker
,
R. B.
Walker
,
B. K.
Kendrick
, and
R. T
Pack
,
J. Chem. Phys.
117
,
6083
(
2002
).
19.
D. K.
Havey
,
Q.
Liu
,
Z.
Li
,
M.
Elioff
, and
A. S.
Mullin
,
J. Phys. Chem. A
111
,
13321
(
2007
).
20.
D. K.
Havey
,
J.
Du
, and
A. S.
Mullin
,
J. Phys. Chem. A
114
,
1569
(
2010
).
21.
T. D.
Sechler
,
L. P.
Dempsey
, and
M. I.
Lester
,
J. Phys. Chem. A
113
,
8845
(
2009
).
22.
L. P.
Dempsey
,
T. D.
Sechler
,
C.
Murray
, and
M. I.
Lester
,
J. Phys. Chem. A
113
,
6851
(
2009
).
23.
A. L.
Brunsvold
,
D. J.
Garton
,
T. K.
Minton
,
D.
Troya
, and
G. C.
Schatz
,
J. Chem. Phys.
121
,
11702
(
2004
).
24.
C.-L.
Liu
,
H. C.
Hsu
,
J.-J.
Lyu
, and
C.-K.
Ni
,
J. Chem. Phys.
123
,
131102
(
2005
).
25.
R. X.
Fernandes
,
K.
Luther
,
J.
Troe
, and
V. G.
Ushakov
,
Phys. Chem. Chem. Phys.
10
,
4313
(
2008
).
26.
V.
Bernshtein
and
I.
Oref
,
J. Chem. Phys.
125
,
133105
(
2006
).
27.
A. W.
Jasper
and
J. A.
Miller
,
J. Phys. Chem. A
113
,
5612
(
2009
).
28.
J. R.
Barker
,
Int. J. Chem. Kinet.
41
,
748
(
2009
).
29.
D. M.
Golden
and
J. R.
Barker
,
Combust. Flame
158
,
602
(
2011
).
30.
A. L.
Kaledin
,
X.
Huang
, and
J. M
Bowman
,
Chem. Phys. Lett.
384
,
80
(
2004
).
31.
G.
Czakó
,
A. L.
Kaledin
, and
J. M.
Bowman
,
J. Chem. Phys.
132
,
164103
(
2010
).
32.
G. D.
Billing
,
Comput. Phys. Rep.
1
,
239
(
1984
).
33.
G. S.
Whittier
and
J. C.
Light
,
J. Chem. Phys.
110
,
4280
(
1999
).
34.
D.
Babikov
,
F.
Aguillon
,
M.
Sizun
, and
V.
Sidis
,
Phys. Rev. A
59
,
330
(
1999
).
35.
M.
Sizun
,
F.
Aguillon
,
V.
Sidis
,
V.
Zenevich
,
G. D.
Billing
, and
N.
Markovi
,
Chem. Phys.
209
,
327
(
1996
).
36.
F.
Aguillon
,
V.
Sidis
, and
J. P.
Gauyacq
,
J. Chem. Phys.
95
,
1020
(
1991
).
37.
M.
Sizun
and
F.
Aguillon
,
Chem. Phys.
226
,
47
(
1998
).
38.
M.
Ivanov
and
D.
Babikov
, “
On molecular origin of mass-independent fractionation of oxygen isotopes in the ozone forming recombination reaction
,”
Proc. Natl. Acad. Sci. U.S.A.
(published online).
39.
T. J.
Park
and
J. C.
Light
,
J. Chem. Phys.
85
,
5870
(
1986
).
40.
H.
Goldstein
,
Classical Mechanics
(
Addison-Wesley
,
Reading, MA
,
1965
).
41.
J. M.
Bowman
,
Chem. Phys. Lett.
217
,
36
(
1994
).
42.
J.
Qi
and
J. M.
Bowman
,
J. Chem. Phys.
105
,
9884
(
1996
).
43.
J.
Qi
and
J. M.
Bowman
,
J. Chem. Phys.
107
,
9960
(
1997
).
44.
S.
Carter
and
J. M.
Bowman
,
J. Chem. Phys.
108
,
4397
(
1998
).
45.
S.
Skokov
and
J.
Bowman
,
J. Chem. Phys.
110
,
9789
(
1999
).
46.
S.
Zou
,
S.
Skokov
, and
J. M.
Bowman
,
J. Phys. Chem. A
105
,
2423
(
2001
).
47.
D. J.
Tannor
,
Introduction to Quantum Mechanics: A Time-dependent Perspective
(
University Science Books
,
2007
).
48.
J. C.
Tully
,
J. Chem. Phys.
93
,
1061
(
1990
).
49.
50.
A.
Semenov
,
M.
Ivanov
, and
D.
Babikov
, “
Ro-vibrational quenching of CO(v = 1) by He impact in a broad range of temperatures: A benchmark study using mixed quantum/classical inelastic scattering theory
” (unpublished).
51.
W. H.
Press
,
B. P.
Flannery
,
S. A.
Teukolsky
, and
W. T.
Vetterling
,
Numerical Recipes
(
Cambridge University Press
,
1989
).
You do not currently have access to this content.