Recently, two-dimensional (2D) electronic spectroscopy has become an important tool to unravel the excited state properties of complex molecular assemblies, such as biological light harvesting systems. In this work, we propose a method for simulating 2D electronic spectra based on a surface hopping approach. This approach self-consistently describes the interaction between photoactive chromophores and the environment, which allows us to reproduce a spectrally observable dynamic Stokes shift. Through an application to a dimer, the method is shown to also account for correct thermal equilibration of quantum populations, something that is of great importance for processes in the electronic domain. The resulting 2D spectra are found to nicely agree with hierarchy of equations of motion calculations. Contrary to the latter, our method is unrestricted in describing the interaction between the chromophores and the environment, and we expect it to be applicable to a wide variety of molecular systems.

1.
J.
Zheng
,
K.
Kwak
,
J.
Ashbury
,
X.
Chen
,
J.
Xie
, and
M. D.
Fayer
,
Science
309
,
1338
(
2005
).
2.
P.
Hamm
,
M. H.
Lim
, and
R. M.
Hochstrasser
,
J. Phys. Chem. B
102
,
6123
(
1998
).
3.
E. H. G.
Backus
,
P. H.
Nguyen
,
V.
Botan
,
R.
Pfister
,
A.
Moretto
,
M.
Crisma
,
C.
Toniolo
,
G.
Stock
, and
P.
Hamm
,
J. Phys. Chem. B
112
,
9091
(
2008
).
4.
H. S.
Chung
,
M.
Khalil
, and
A.
Tokmakoff
,
J. Phys. Chem. B
108
,
15332
(
2004
).
5.
C.
Kolano
,
J.
Helbing
,
M.
Kozinski
,
W.
Sander
, and
P.
Hamm
,
Nature (London)
444
,
469
(
2006
).
6.
T.
Brixner
,
J.
Stenger
,
H. M.
Vaswani
,
M.
Cho
,
R. E.
Blankenship
, and
G. R.
Fleming
,
Nature (London)
434
,
625
(
2005
).
7.
J. A.
Myers
,
K. L. M.
Lewis
,
F. D.
Fuller
,
P. F.
Tekavec
,
C. F.
Yocum
, and
J. P.
Ogilvie
,
J. Phys. Chem. Lett.
1
,
2774
(
2010
).
8.
M.
Aeschlimann
,
T.
Brixner
,
A.
Fischer
,
C.
Kramer
,
P.
Melchior
,
W.
Pfeiffer
,
C.
Schneider
,
C.
Strüber
,
P.
Tuchscherer
, and
D. V.
Voronine
,
Science
333
,
1723
(
2011
).
9.
G. S.
Engel
,
T. R.
Calhoun
,
E. L.
Read
,
T.-K.
Ahn
,
T.
Mančal
,
Y.-C.
Cheng
,
R. E.
Blankenship
, and
G. R.
Fleming
,
Nature (London)
446
,
782
(
2007
).
10.
T.
Gustavsson
,
G.
Baldachino
,
J.-C.
Mialocq
, and
S.
Pommeret
,
Chem. Phys. Lett.
236
,
587
(
1995
).
11.
Y.
Tanimura
and
R.
Kubo
,
J. Phys. Soc. Jpn.
58
,
101
(
1989
).
12.
A.
Ishizaki
and
Y.
Tanimura
,
J. Phys. Chem. A
111
,
9269
(
2007
).
13.
A.
Ishizaki
and
G. R.
Fleming
,
J. Chem. Phys.
130
,
234111
(
2009
).
14.
L.
Chen
,
R.
Zheng
,
Q.
Shi
, and
Y.
Yan
,
J. Chem. Phys.
132
,
024505
(
2010
).
15.
C.
Olbrich
,
T. L. C.
Jansen
,
J.
Liebers
,
M.
Aghtar
,
J.
Strümpfer
,
K.
Schulten
,
J.
Knoester
, and
U.
Kleinekathöfer
,
J. Phys. Chem. B
115
,
8609
(
2011
).
16.
J. C.
Tully
,
J. Chem. Phys.
93
,
1061
(
1990
).
17.
T. L. C.
Jansen
,
W.
Zhuang
, and
S.
Mukamel
,
J. Chem. Phys.
121
,
10577
(
2004
).
18.
H.
Torii
,
J. Phys. Chem. A
110
,
4822
(
2006
).
19.
A. G.
Redfield
,
Advances in Magnetic Resonance
, edited by
J. S.
Waugh
(
Academic Press
,
1965
), Vol.
1
, pp.
1
30
.
20.
S.
Mukamel
,
Principles of Nonlinear Optical Spectroscopy
(
Oxford University Press
,
New York
,
1995
).
21.
J. T.
Stockburger
and
H.
Grabert
,
Phys. Rev. Lett.
88
,
170407
(
2002
).
22.
H.
Wang
and
M.
Thoss
,
Chem. Phys.
347
,
139
(
2008
).
23.
G.
Stock
and
W. H.
Miller
,
J. Chem. Phys.
99
,
1545
(
1993
).
24.
I.
Uspenskiy
,
B.
Strodel
, and
G.
Stock
,
J. Chem. Theory Comput.
2
,
1605
(
2006
).
25.
T. L. C.
Jansen
and
J.
Knoester
,
J. Chem. Phys.
127
,
234502
(
2007
).
26.
T. L. C.
Jansen
and
J.
Knoester
,
J. Phys. Chem. B
110
,
22910
(
2006
).
27.
S.
Roy
,
J.
Lessing
,
G.
Meisl
,
Z.
Ganim
,
A.
Tokmakoff
,
J.
Knoester
, and
T. L. C.
Jansen
,
J. Chem. Phys.
135
,
234507
(
2011
).
28.
T. L. C.
Jansen
and
J.
Knoester
,
J. Chem. Phys.
124
,
044502
(
2006
).
29.
T. L. C.
Jansen
,
D.
Cringus
, and
M. S.
Pshenichnikov
,
J. Phys. Chem. A
113
,
6260
(
2009
).
30.
P. L.
McRobbie
,
G.
Hanna
,
Q.
Shi
, and
E.
Geva
,
Acc. Chem. Res.
42
,
1299
(
2009
).
31.
K.
Kwac
and
E.
Geva
,
J. Phys. Chem. B
116
,
2856
(
2012
).
32.
P.
Ehrenfest
,
Z. Phys.
45
,
455
(
1927
).
33.
C. P.
van der Vegte
,
A.
Dijkstra
,
J.
Knoester
, and
T. L. C.
Jansen
, “
Calculating two-dimensional spectra with the mixed quantum-classical Ehrenfest method
,”
J. Phys. Chem. A
(published online).
34.
P. V.
Parandekar
and
J. C.
Tully
,
J. Chem. Theory Comput.
2
,
229
(
2006
).
35.
O. V.
Prezhdo
and
P. J.
Rossky
,
J. Chem. Phys.
107
,
825
(
1997
).
36.
E.
Fabiano
,
T. W.
Keal
, and
W.
Thiel
,
Chem. Phys.
349
,
334
(
2008
).
37.
T.
Nelson
,
S.
Fernandez-Alberti
,
V.
Chernyak
,
A. E.
Roitberg
, and
S.
Tretiak
,
J. Phys. Chem. B
115
,
5402
(
2011
).
38.
P. V.
Parandekar
and
J. C.
Tully
,
J. Chem. Phys.
122
,
094102
(
2005
).
39.
J. R.
Schmidt
,
P. V.
Parandekar
, and
J. C.
Tully
,
J. Chem. Phys.
129
,
044104
(
2008
).
40.
V.
May
and
O.
Kühn
,
Charge and Energy Transfer Dynamics in Molecular Systems
(
John Wiley & Sons
,
2004
).
41.
D. J.
Griffiths
,
Introduction to Quantum Mechanics
(
Prentice Hall
,
1995
).
42.
J. C.
Tully
,
Faraday Discuss.
110
,
407
(
1998
).
43.
J. C.
Tully
and
R. K.
Preston
,
J. Chem. Phys.
55
,
562
(
1971
).
44.
S.
Hammes-Schiffer
and
T. C.
Tully
,
J. Chem. Phys.
101
,
4657
(
1994
).
45.
D. F.
Coker
and
L.
Xiao
,
J. Chem. Phys.
102
,
496
(
1995
).
46.
U.
Müller
and
G.
Stock
,
J. Chem. Phys.
107
,
6230
(
1997
).
47.
P.
Hamm
and
M.
Zanni
,
Concepts and Methods of 2D Infrared Spectroscopy
(
Cambridge University Press
,
2011
).
48.
This follows from Fig. 1(d) of
D.
Abramavicius
 et al.,
Biophys J.
94
,
3613
(
2008
), considering that excitation to the lowest-energy singly excited state is only weakly allowed and that the energy of the doubly excited state amounts to the sum of both singly excited energies.
49.
S. A.
Fischer
,
C. T.
Chapman
, and
X.
Li
,
J. Chem. Phys.
135
,
144102
(
2011
).
You do not currently have access to this content.