The human islet amylin polypeptide is produced along with insulin by pancreatic islets. Under some circumstances, amylin can aggregate to form amyloid fibrils, whose presence in pancreatic cells is a common pathological feature of Type II diabetes. A growing body of evidence indicates that small, early stage aggregates of amylin are cytotoxic. A better understanding of the early stages of the amylin aggregation process and, in particular, of the nucleation events leading to fibril growth could help identify therapeutic strategies. Recent studies have shown that, in dilute solution, human amylin can adopt an α-helical conformation, a β-hairpin conformation, or an unstructured coil conformation. While such states have comparable free energies, the β-hairpin state exhibits a large propensity towards aggregation. In this work, we present a detailed computational analysis of the folding pathways that arise between the various conformational states of human amylin in water. A free energy surface for amylin in explicit water is first constructed by resorting to advanced sampling techniques. Extensive transition path sampling simulations are then employed to identify the preferred folding mechanisms between distinct minima on that surface. Our results reveal that the α-helical conformer of amylin undergoes a transformation into the β-hairpin monomer through one of two mechanisms. In the first, misfolding begins through formation of specific contacts near the turn region, and proceeds via a zipping mechanism. In the second, misfolding occurs through an unstructured coil intermediate. The transition states for these processes are identified. Taken together, the findings presented in this work suggest that the inter-conversion of amylin between an α-helix and a β-hairpin is an activated process and could constitute the nucleation event for fibril growth.

2.
A.
Lorenzo
,
B.
Razzaboni
,
G. C.
Weir
, and
B. A.
Yankner
,
Nature (London)
368
,
756
(
1994
).
3.
P. P.
Westermark
,
A. A.
Andersson
, and
G. T. G.
Westermark
,
Physiol. Rev.
91
,
795
(
2011
).
4.
J. D.
Knight
,
J. A.
Williamson
, and
A. D.
Miranker
,
Protein Sci.
17
,
1850
(
2008
).
5.
C. S.
Goldsbury
 et al,
J. Struct. Biol.
119
,
17
(
1997
).
6.
P.
Westermark
,
Z. C.
Li
,
G. T.
Westermark
,
A.
Leckstrom
, and
D. F.
Steiner
,
FEBS Lett.
379
,
203
(
1996
).
7.
J. D.
Green
,
C.
Goldsbury
,
J.
Kistler
,
G. J. S.
Cooper
, and
U.
Aebi
,
J. Biol. Chem.
279
,
12206
(
2004
).
8.
P.
Cao
,
A.
Abedini
, and
D. P.
Raleigh
,
Curr. Opin. Struct. Biol.
23
(
1
),
82
89
(
2013
).
9.
C. T.
Middleton
 et al,
Nat. Chem.
4
,
355
(
2012
).
10.
L.
Wang
 et al,
J. Am. Chem. Soc.
133
,
16062
(
2011
).
11.
S.
Luca
,
W.-M.
Yau
,
R.
Leapman
, and
R.
Tycko
,
Biochemistry
46
,
13505
(
2007
).
12.
A. V.
Kajava
,
U.
Aebi
, and
A. C.
Steven
,
J. Mol. Biol.
348
,
247
(
2005
).
13.
S.
Bedrood
 et al,
J. Biol. Chem.
287
,
5235
(
2012
).
14.
J.
Saldanha
and
D.
Mahadevan
,
Protein Eng.
4
,
539
(
1991
).
15.
J. D.
Knight
,
J. A.
Hebda
, and
A. D.
Miranker
,
Biochemistry
45
,
9496
(
2006
).
16.
C.
Goldsbury
 et al,
J. Struct. Biol.
130
,
352
(
2000
).
17.
J. D.
Knight
and
A. D.
Miranker
,
J. Mol. Biol.
341
,
1175
(
2004
).
18.
S. H.
Shim
 et al,
Proc. Natl. Acad. Sci. U.S.A.
106
,
6614
(
2009
).
19.
S. A.
Jayasinghe
and
R.
Langen
,
Biochemistry
44
,
12113
(
2005
).
20.
P.
Westermark
,
U.
Engstrom
,
K. H.
Johnson
,
G. T.
Westermark
, and
C.
Betsholtz
,
Proc. Natl. Acad. Sci. U.S.A.
87
,
5036
(
1990
).
21.
D. F.
Moriarty
and
D. P.
Raleigh
,
Biochemistry
38
,
1811
(
1999
).
22.
J.
Green
 et al,
J. Mol. Biol.
326
,
1147
(
2003
).
23.
S.
Sakagashira
 et al,
Diabetes
45
,
1279
(
1996
).
24.
W. J.
Lee
 et al,
Diabetologia
44
,
2187
(
2001
).
25.
S.
Gebre-Medhin
 et al,
Biochem. Biophys. Res. Commun.
250
,
271
(
1998
).
26.
P.
Cao
 et al,
J. Mol. Biol.
421
,
282
(
2012
).
27.
M.
Andreasen
 et al,
Biochim. Biophys. Acta
1824
,
274
(
2012
).
28.
A. S.
Reddy
 et al,
Biophys. J.
99
,
2208
(
2010
).
29.
N. F.
Dupuis
,
C.
Wu
,
J. E.
Shea
, and
M. T.
Bowers
,
J. Am. Chem. Soc.
131
,
18283
(
2009
).
30.
N. F.
Dupuis
,
C.
Wu
,
J.-E.
Shea
, and
M. T.
Bowers
,
J. Am. Chem. Soc.
133
,
7240
(
2011
).
31.
M.
Chopra
,
A. S.
Reddy
,
N. L.
Abbott
, and
J. J.
de Pablo
,
J. Chem. Phys.
129
,
135102
(
2008
).
32.
R.
Kayed
 et al,
J. Mol. Biol.
287
,
781
(
1999
).
33.
C. E.
Higham
,
E. T. A. S.
Jaikaran
,
P. E.
Fraser
,
M.
Gross
, and
A.
Clark
,
FEBS Lett.
470
,
55
(
2000
).
34.
A. K.
Dunker
 et al,
J. Mol. Graphics Modell.
19
,
26
(
2001
).
35.
E.
Jaikaran
and
A.
Clark
,
Biochim. Biophys. Acta
1537
,
179
(
2001
).
36.
S. B.
Padrick
and
A. D.
Miranker
,
J. Mol. Biol.
308
,
783
(
2001
).
37.
S.
Jha
,
D.
Sellin
,
R.
Seidel
, and
R.
Winter
,
J. Mol. Biol.
389
,
907
(
2009
).
38.
I. T.
Yonemoto
,
G. J. A.
Kroon
,
H. J.
Dyson
,
W. E.
Balch
, and
J. W.
Kelly
,
Biochemistry
47
,
9900
(
2008
).
39.
J. A.
Williamson
and
A. D.
Miranker
,
Protein Sci.
16
,
110
(
2007
).
40.
J. R.
Cort
 et al,
Protein Eng. Des. Sel.
22
,
497
(
2009
).
41.
S. M.
Patil
,
S. H.
Xu
,
S. R.
Sheftic
, and
A. T.
Alexandrescu
,
J. Biol. Chem.
284
,
11982
(
2009
).
42.
S. R.
Griffiths-Jones
,
A. J.
Maynard
, and
M. S.
Searle
,
J. Mol. Biol.
292
,
1051
(
1999
).
43.
J. F.
Espinosa
,
F. A.
Syud
, and
S. H.
Gellman
,
Protein Sci.
11
,
1492
(
2002
).
44.
B.
Ciani
,
M.
Jourdan
, and
M. S.
Searle
,
J. Am. Chem. Soc.
125
,
9038
(
2003
).
45.
R. M.
Fesinmeyer
,
F. M.
Hudson
, and
N. H.
Andersen
,
J. Am. Chem. Soc.
126
,
7238
(
2004
).
46.
V.
Muñoz
,
Proc. Natl. Acad. Sci. U.S.A.
101
,
17646
(
2004
).
47.
A. L.
Serrano
,
M. M.
Waegele
, and
F.
Gai
,
Protein Sci.
21
,
157
(
2012
).
48.
H. S.
Chung
,
K.
McHale
,
J. M.
Louis
, and
W. A.
Eaton
,
Science
335
,
981
(
2012
).
49.
P.
Ferrara
,
J.
Apostolakis
, and
A.
Caflisch
,
J. Phys. Chem. B
104
,
5000
(
2000
).
50.
S.
Gnanakaran
and
A. E.
Garcia
,
Biophys. J.
84
,
1548
(
2003
).
51.
C. M.
Santiveri
,
M. A.
Jimenez
,
M.
Rico
,
W. F.
Van Gunsteren
, and
X.
Daura
,
J. Pept. Sci.
10
,
546
(
2004
).
52.
R. B.
Best
and
J.
Mittal
,
Proc. Natl. Acad. Sci. U.S.A.
108
,
11087
(
2011
).
53.
F.
Ding
,
J. M.
Borreguero
,
S. V.
Buldyrey
,
H. E.
Stanley
, and
N. V.
Dokholyan
,
Proteins: Struct., Funct., Genet.
53
,
220
(
2003
).
54.
P. G.
Bolhuis
,
Proc. Natl. Acad. Sci. U.S.A.
100
,
12129
(
2003
).
55.
C.
Dellago
and
P. G.
Bolhuis
,
Adv. Comput. Simul. Approaches Soft Matter Sci. III
221
,
167
(
2009
).
56.
C.
Oostenbrink
,
A.
Villa
,
A. E.
Mark
, and
W. F.
van Gunsteren
,
J. Comput. Chem.
25
,
1656
(
2004
).
57.
P.
Mark
and
L.
Nilsson
,
J. Phys. Chem. A
105
,
9954
(
2001
).
58.
C.
Camilloni
,
L.
Sutto
,
D.
Provasi
,
G.
Tiana
, and
R. A.
Broglia
,
Protein Sci.
17
,
1424
(
2008
).
59.
R. A.
Latour
,
Biointerphases
3
,
FC2
(
2008
).
60.
J. L.
MacCallum
,
M. S.
Moghaddam
,
H. S.
Chan
, and
D. P.
Tieleman
,
Proc. Natl. Acad. Sci. U.S.A.
104
,
6206
(
2007
).
61.
B.
Hess
,
C.
Kutzner
,
D.
van der Spoel
, and
E.
Lindahl
,
J. Chem. Theory Comput.
4
,
435
(
2008
).
62.
T.
Darden
,
D.
York
, and
L.
Pedersen
,
J. Chem. Phys.
98
,
10089
(
1993
).
63.
A.
Laio
and
M.
Parrinello
,
Proc. Natl. Acad. Sci. U.S.A.
99
,
12562
(
2002
).
64.
S.
Singh
,
M.
Chopra
, and
J. J.
de Pablo
,
Annu. Rev. Chem. Biol. Eng.
3
,
369
(
2012
).
65.
F.
Pietrucci
and
A.
Laio
,
J. Chem. Theory Comput.
5
,
2197
(
2009
).
66.
M.
Heinig
and
D.
Frishman
,
Nucleic Acids Res.
32
,
W500
(
2004
).
67.
Q. L.
Yan
and
J. J.
de Pablo
,
J. Chem. Phys.
113
,
1276
(
2000
).
68.
S.
Piana
and
A.
Laio
,
J. Phys. Chem. B
111
,
4553
(
2007
).
69.
A.
Laio
and
F. L.
Gervasio
,
Rep. Prog. Phys.
71
,
126601
(
2008
).
70.
M.
Bonomi
 et al,
Comput. Phys. Commun.
180
,
1961
(
2009
).
71.
A. S.
Reddy
,
M.
Chopra
, and
J. J.
de Pablo
,
Biophys. J.
98
,
1038
(
2010
).
72.
D.
Antoniou
and
S. D.
Schwartz
,
J. Chem. Phys.
130
,
151103
(
2009
).
73.
P. G.
Bolhuis
,
C.
Dellago
,
P. L.
Geissler
, and
D.
Chandler
,
J. Phys.: Condens. Matter
12
,
A147
(
2000
).
74.
H. W.
Wu
,
S. M.
Wang
, and
B. R.
Brooks
,
J. Am. Chem. Soc.
124
,
5282
(
2002
).
75.
See supplementary material at http://dx.doi.org/10.1063/1.4798460 for additional information and results.
76.
C. L.
Perrin
,
J. Am. Chem. Soc.
119
,
8748
(
1997
).
77.
S. B.
Ozkan
,
G. A.
Wu
,
J. D.
Chodera
, and
K. A.
Dill
,
Proc. Natl. Acad. Sci. U.S.A.
104
,
11987
(
2007
).
78.
G. G.
Maisuradze
,
A.
Liwo
, and
H. A.
Scheraga
,
J. Mol. Biol.
385
,
312
(
2009
).
79.
B.
Peters
and
B. L.
Trout
,
J. Chem. Phys.
125
,
054108
(
2006
).
80.
S.
Piana
,
K.
Lindorff-Larsen
, and
D. E.
Shaw
,
Biophys. J.
100
,
L47
(
2011
).
81.
W.
Han
and
K.
Schulten
,
J. Chem. Theory Comput.
8
,
4413
(
2012
).
82.
R. B.
Best
and
J.
Mittal
,
Proteins: Struct., Funct., Bioinf.
79
,
1318
(
2011
).
83.
T. J.
Lane
,
D.
Shukla
,
K. A.
Beauchamp
, and
V. S.
Pande
,
Curr. Opin. Struct. Biol.
23
,
58
(
2013
).
84.
P. S.
Nerenberg
and
T.
Head-Gordon
,
J. Chem. Theory Comput.
7
,
1220
(
2011
).
85.
S.
Piana
,
K.
Lindorff-Larsen
, and
D. E.
Shaw
,
Proc. Natl. Acad. Sci. U.S.A.
109
,
17845
(
2012
).

Supplementary Material

You do not currently have access to this content.