The intracellular release of calcium from the endoplasmic reticulum is controlled by ion channels. The resulting calcium signals exhibit a rich spatio-temporal signature, which originates at least partly from microscopic fluctuations. While stochasticity in the gating transition of ion channels has been incorporated into many models, the distribution of calcium is usually described by deterministic reaction-diffusion equations. Here we test the validity of the latter modeling approach by using two different models to calculate the frequency of localized calcium signals (calcium puffs) from clustered IP3 receptor channels. The complexity of the full calcium system is here limited to the basic opening mechanism of the ion channels and, in the mathematical reduction simplifies to the calculation of a first passage time. Two models are then studied: (i) a hybrid model, where channel gating is treated stochastically, while calcium concentration is deterministic and (ii) a fully stochastic model with noisy channel gating and Brownian calcium ion motion. The second model utilises the recently developed two-regime method [M. B. Flegg, S. J. Chapman, and R. Erban, “The two-regime method for optimizing stochastic reaction-diffusion simulations,” J. R. Soc., Interface9, 859868 (2012)] https://doi.org/10.1098/rsif.2011.0574 in order to simulate a large domain with precision required only near the Ca2+ absorbing channels. The expected time for a first channel opening that results in a calcium puff event is calculated. It is found that for a large diffusion constant, predictions of the interpuff time are significantly overestimated using the model (i) with a deterministic non-spatial calcium variable. It is thus demonstrated that the presence of diffusive noise in local concentrations of intracellular Ca2+ ions can substantially influence the occurrence of calcium signals. The presented approach and results may also be relevant for other cell-physiological first-passage time problems with small ligand concentration and high cooperativity.

1.
M. B.
Flegg
,
S. J.
Chapman
, and
R.
Erban
, “
The two-regime method for optimizing stochastic reaction-diffusion simulations
,”
J. R. Soc., Interface
9
,
859
868
(
2012
).
2.
B.
Alberts
,
A.
Johnson
,
J.
Lewis
,
M.
Raff
,
K.
Roberts
, and
P.
Walter
,
Molecular Biology of the Cell
(
Garland Science
,
New York
,
2007
).
3.
A.
Goldbeter
,
G.
Dupont
, and
M. J.
Berridge
, “
Minimal model for signal-induced Ca2+ oscillations and for their frequency encoding through protein phosphorylation
,”
Proc. Natl. Acad. Sci. U.S.A.
87
,
1461
1465
(
1990
).
4.
G.
DeYoung
and
J.
Keizer
, “
A single-pool inositol 1,4,5-trisphosphate-receptor-based model for agonist-stimulated oscillations in Ca2+ concentration
,”
Proc. Natl. Acad. Sci. U.S.A.
89
,
9895
9899
(
1992
).
5.
J.
Yao
,
J.
Choi
, and
I.
Parker
, “
Quantal puffs of intracellular Ca2+ evoked by inositol trisphosphate in xenopus oocytes
,”
J. Physiol.
482
,
533
(
1995
).
6.
J.
Foskett
,
C.
White
,
K.
Cheung
, and
D. J.
Mak
, “
Trisphosphate receptor Ca2+ release channels
,”
Physiol. Rev.
87
,
593
(
2007
).
7.
G.
Dupont
,
L.
Combettes
, and
L.
Leybaert
, “
Calcium dynamics: Spatio-temporal organization from the subcellular to the organ level
,”
Int. Rev. Cytol.
261
,
193
245
(
2007
).
8.
I.
Smith
and
I.
Parker
, “
Imaging the quantal substructure of single IP3R channel activity during Ca2+ puffs in intact mammalian cells
,”
Proc. Natl. Acad. Sci. U.S.A.
106
,
6404
(
2009
).
9.
C.
Wei
,
X.
Wang
,
M.
Chen
,
K.
Ouyang
,
L.-S.
Song
, and
H.
Cheng
, “
Calcium flickers steer cell migration
,”
Nature (London)
457
,
901
905
(
2008
).
10.
J. D.
Capite
,
S.
Ng
, and
A.
Parekh
, “
Decoding of cytoplasmic Ca2+ oscillations through the spatial signature drives gene expression
,”
Curr. Biol.
19
,
853
858
(
2009
).
11.
A.
Parekh
, “
Decoding cytosolic Ca2+ oscillations
,”
Trends Biochem. Sci.
36
,
78
(
2010
).
12.
S.
Swillens
,
G.
Dupont
, and
P.
Champeil
, “
From calcium blips to calcium puffs: Theoretical analysis of the requirements for interchannel communication
,”
Proc. Natl. Acad. Sci. U.S.A.
96
,
13750
13755
(
1999
).
13.
M.
Falcke
, “
On the role of stochastic channel behavior in intracellular Ca2+ dynamics
,”
Biophys. J.
84
,
42
56
(
2003
).
14.
S.
Rüdiger
,
C.
Nagaiah
,
G.
Warnecke
, and
J. W.
Shuai
, “
Calcium domains around single and clustered IP3 receptors and their modulation by buffers
,”
Biophys. J.
99
,
3
12
(
2010
).
15.
J.
Shuai
and
P.
Jung
, “
Optimal ion channel clustering for intracellular calcium signaling
,”
Proc. Natl. Acad. Sci. U.S.A.
100
,
506
510
(
2003
).
16.
H.
DeRemigio
,
J.
Groff
, and
G.
Smith
, “
Calcium release site ultrastructure and the dynamics of puffs and sparks
,”
Math. Med. Biol.
25
,
65
(
2008
).
17.
S.
Rüdiger
,
J.
Shuai
, and
I.
Sokolov
, “
Law of mass action, detailed balance, and the modeling of calcium puffs
,”
Phys. Rev. Lett.
105
,
048103
(
2010
).
18.
H.
Berg
and
E.
Purcell
, “
Physics of chemoreception
,”
Biophys. J.
20
,
193
219
(
1977
).
19.
W.
Bialek
and
S.
Setayeshgar
, “
Physical limits to biochemical signaling
,”
Proc. Natl. Acad. Sci. U.S.A.
102
,
10040
10045
(
2005
).
20.
J.
Elf
and
M.
Ehrenberg
, “
Fast evaluation of fluctuations in biochemical networks with the linear noise approximation
,”
Genome Res.
13
,
2475
2484
(
2003
).
21.
I.
Parker
,
J.
Choi
, and
Y.
Yao
, “
Elementary events of insp3-induced Ca2+ liberation in xenopus oocytes: Hot spots, puffs, and blips
,”
Cell Calcium
20
,
105
121
(
1996
).
22.
G. D.
Dickinson
,
D.
Swaminathan
, and
I.
Parker
, “
The probability of triggering calcium puffs is linearly related to the number of inositol trisphosphate receptors in a cluster
,”
Biophys. J.
102
,
1826
1836
(
2012
).
23.
M.
Gibson
and
J.
Bruck
, “
Efficient exact stochastic simulation of chemical systems with many species and channels
,”
J. Phys. Chem. A
104
,
1876
1889
(
2000
).
24.
R.
Erban
,
J.
Chapman
, and
P.
Maini
, “
A practical guide to stochastic simulations of reaction-diffusion processes
,” preprint arXiv:0704.1908 [q-bio.SC] (
2007
).
25.
S. S.
Andrews
and
D.
Bray
, “
Stochastic simulation of chemical reactions with spatial resolution and single molecular detail
,”
Phys. Biol.
1
,
137
151
(
2004
).
26.
S.
Engblom
,
L.
Ferm
,
A.
Hellander
, and
P.
Lötstedt
, “
Simulation of stochastic reaction-diffusion processes on unstructured meshes
,”
SIAM J. Sci. Comput. (USA)
31
,
1774
1797
(
2009
).
27.
J.
Lipkova
,
K. C.
Zygalakis
,
S. J.
Chapman
, and
R.
Erban
, “
Analysis of brownian dynamics simulations of reversible biomolecular reactions
,”
SIAM J. Appl. Math.
71
,
714
730
(
2011
).
28.
R.
Erban
and
S. J.
Chapman
, “
Stochastic modelling of reaction-diffusion processes: algorithms for bimolecular reactions
,”
Phys. Biol.
6
,
046001
(
2009
).
29.
R.
Erban
and
S. J.
Chapman
, “
Reactive boundary conditions for stochastic simulations of reaction-diffusion processes
,”
Phys. Biol.
4
,
16
28
(
2007
).
30.
A. W.
Bowman
and
A.
Azzalini
,
Applied Smoothing Techniques of Data Analysis
(
Oxford University Press
,
Oxford
,
1997
).
31.
B. R.
Caré
and
H. A.
Soula
, “
Receptor clustering affects signal transduction at the membrane level in the reaction-limited regime
,”
Phys. Rev. E
87
,
012720
(
2013
).
32.
K.
Thurley
,
I.
Smith
,
S.
Tovey
,
C.
Taylor
,
I.
Parker
 et al, “
Timescales of IP3-evoked Ca2+ spikes emerge from Ca2+ puffs only at the cellular level
,”
Biophys. J.
101
,
2638
2644
(
2011
).
33.
I. F.
Smith
,
S. M.
Wiltgen
, and
I.
Parker
, “
Localization of puff sites adjacent to the plasma membrane: Functional and spatial characterization of Ca2+ signaling in SH-SY5Y cells utilizing membrane-permeant caged IP3
,”
Cell Calcium
45
,
65
76
(
2009
).
34.
A.
Sherman
,
G. D.
Smith
,
L.
Dai
, and
R. M.
Miura
, “
Asymptotic analysis of buffered calcium diffusion near a point source
,”
SIAM J. Appl. Math.
61
,
1816
1838
(
2001
).
35.
J.
Hake
and
G.
Lines
, “
Stochastic Binding of Ca2+ Ions in the Dyadic Cleft; Continuous versus Random Walk Description of Diffusion
,”
Biophys. J.
94
,
4184
(
2008
).
You do not currently have access to this content.