The effects of the electronic and geometric factors on the global minimum structures of MB9 (M = V, Nb, Ta) are investigated using photoelectron spectroscopy and ab initio calculations. Photoelectron spectra are obtained for MB9 at two photon energies, and similar spectral features are observed for all three species. The structures for all clusters are established by global minima searches and confirmed by comparison of calculated and experimental vertical electron detachment energies. The VB9 cluster is shown to have a planar C2v V©B9 structure, whereas both NbB9 and TaB9 are shown to have Cs M©B9 type structures with the central metal atom slightly out of plane. Theoretical calculations suggest that the V atom fits perfectly inside the B9 ring forming a planar D9h V©B92− structure, while the lower symmetry of V©B9 is due to the Jahn-Teller effect. The Nb and Ta atoms are too large to fit in the B9 ring, and they are squeezed out of the plane slightly even in the M©B92− dianions. Thus, even though all three M©B92− dianions fulfill the electronic design principle for the doubly aromatic molecular wheels, the geometric effect lowers the symmetry of the Nb and Ta clusters.

1.
H. J.
Zhai
,
A. N.
Alexandrova
,
K. A.
Birch
,
A. I.
Boldyrev
, and
L. S.
Wang
,
Angew. Chem., Int. Ed.
42
,
6004
(
2003
).
2.
H. J.
Zhai
,
B.
Kiran
,
J.
Li
, and
L. S.
Wang
,
Nature Mater.
2
,
827
(
2003
).
3.
A. N.
Alexandrova
,
H. J.
Zhai
,
L. S.
Wang
, and
A. I.
Boldyrev
,
Inorg. Chem.
43
,
3552
(
2004
).
4.
B.
Kiran
,
S.
Bulusu
,
H. J.
Zhai
,
S.
Yoo
,
X. C.
Zeng
, and
L. S.
Wang
,
Proc. Natl. Acad. Sci. U.S.A.
102
,
961
(
2005
).
5.
A. N.
Alexandrova
,
A. I.
Boldyrev
,
H. J.
Zhai
, and
L. S.
Wang
,
Coord. Chem. Rev.
250
,
2811
(
2006
).
6.
A. P.
Sergeeva
,
D. Y.
Zubarev
,
H. J.
Zhai
,
A. I.
Boldyrev
, and
L. S.
Wang
,
J. Am. Chem. Soc.
130
,
7244
(
2008
).
7.
W.
Huang
,
A. P.
Sergeeva
,
H. J.
Zhai
,
B. B.
Averkiev
,
L. S.
Wang
, and
A. I.
Boldyrev
,
Nat. Chem.
2
,
202
(
2010
).
8.
A. P.
Sergeeva
,
B. B.
Averkiev
,
H. J.
Zhai
,
A. I.
Boldyrev
, and
L. S.
Wang
,
J. Chem. Phys.
134
,
224304
(
2011
).
9.
Z. A.
Piazza
,
W. L.
Li
,
C.
Romanescu
,
A. P.
Sergeeva
,
L. S.
Wang
, and
A. I.
Boldyrev
,
J. Chem. Phys.
136
,
104310
(
2012
).
10.
A. P.
Sergeeva
,
Z. A.
Piazza
,
C.
Romanescu
,
W. L.
Li
,
A. I.
Boldyrev
, and
L. S.
Wang
,
J. Am. Chem. Soc.
134
,
18065
(
2012
).
11.
E.
Oger
,
N. R. M.
Crawford
,
R.
Kelting
,
P.
Weis
,
M. M.
Kappes
, and
R.
Ahlrichs
,
Angew. Chem., Int. Ed.
46
,
8503
(
2007
).
12.
W. N.
Lipscomb
,
Acc. Chem. Res.
6
,
257
(
1973
).
13.
B.
Kiran
,
G. G.
Kumar
,
M. T.
Nguyen
,
A. K.
Kandalam
, and
P.
Jena
,
Inorg. Chem.
48
,
9965
(
2009
).
14.
T. B.
Tai
,
D. J.
Grant
,
M. T.
Nguyen
, and
D. A.
Dixon
,
J. Phys. Chem. A
114
,
994
(
2009
).
15.
T. B.
Tai
,
N. M.
Tam
, and
M. T.
Nguyen
,
Chem. Phys. Lett.
530
,
71
(
2012
).
16.
T. B.
Tai
,
A.
Ceulemans
, and
M. T.
Nguyen
,
Chem.-Eur. J.
18
,
4510
(
2012
).
17.
F.
Li
,
P.
Jin
,
D. E.
Jiang
,
L.
Wang
,
S. B.
Zhang
,
J.
Zhao
, and
Z. F.
Chen
,
J. Chem. Phys.
136
,
074302
(
2012
).
18.
B. P. T.
Fokwa
and
M.
Hermus
,
Angew. Chem., Int. Ed.
51
,
1702
(
2012
).
19.
Q.
Zheng
,
M.
Kohout
,
R.
Gumeniuk
,
N.
Abramchuk
,
H.
Borrmann
,
Y.
Prots
,
U.
Burkhardt
,
W.
Schnelle
,
L.
Akselrud
,
H.
Gu
,
A.
Leithe-Jasper
, and
Y.
Grin
,
Inorg. Chem.
51
,
7472
(
2012
).
20.
D. Y.
Zubarev
and
A. I.
Boldyrev
,
Phys. Chem. Chem. Phys.
10
,
5207
(
2008
).
21.
The symbol © is used to denote wheel-type structures with a central atom, according to Ref. 22.
22.
C.
Romanescu
,
T. R.
Galeev
,
W.-L.
Li
,
A. I.
Boldyrev
, and
L.-S.
Wang
,
Angew. Chem., Int. Ed.
50
,
9334
(
2011
).
23.
C.
Romanescu
,
T. R.
Galeev
,
W.-L.
Li
,
A. I.
Boldyrev
, and
L.-S.
Wang
,
Acc. Chem. Res.
46
(
2
),
350
358
(
2012
).
24.
W. L.
Li
,
C.
Romanescu
,
T. R.
Galeev
,
Z. A.
Piazza
,
A. I.
Boldyrev
, and
L. S.
Wang
,
J. Am. Chem. Soc.
134
,
165
(
2012
).
25.
C.
Romanescu
,
T. R.
Galeev
,
A. P.
Sergeeva
,
W. L.
Li
,
L. S.
Wang
, and
A. I.
Boldyrev
,
J. Organomet. Chem.
721–722
,
148
(
2012
).
26.
K.
Ito
,
Z.
Pu
,
Q. S.
Li
, and
P. V. R.
Schleyer
,
Inorg. Chem.
47
,
10906
(
2008
).
27.
Z. F.
Pu
,
K.
Ito
,
P. V.
Schleyer
, and
Q. S.
Li
,
Inorg. Chem.
48
,
10679
(
2009
).
28.
K.
Exner
and
P. V.
Schleyer
,
Science
290
,
1937
(
2000
).
29.
Z. X.
Wang
and
P. V.
Schleyer
,
Science
292
,
2465
(
2001
).
30.
R.
Islas
,
T.
Heine
,
K.
Ito
,
P. V. R.
Schleyer
, and
G.
Merino
,
J. Am. Chem. Soc.
129
,
14767
(
2007
).
31.
Q.
Luo
,
Sci. China, Ser. B: Chem.
51
,
607
(
2008
).
32.
Q. Y.
Wu
,
Y. P.
Tang
, and
X. H.
Zhang
,
Sci. China, Ser. B: Chem.
52
,
288
(
2009
).
33.
B. B.
Averkiev
and
A. I.
Boldyrev
,
Russ. J. Gen. Chem.
78
,
769
(
2008
).
34.
C. Q.
Miao
,
J. C.
Guo
, and
S. D.
Li
,
Sci. China, Ser. B: Chem.
52
,
900
(
2009
).
35.
J. C.
Guo
,
W. Z.
Yao
,
Z.
Li
, and
S. D.
Li
,
Sci. China, Ser. B: Chem.
52
,
566
(
2009
).
36.
H. J.
Zhai
,
C. Q.
Miao
,
S. D.
Li
, and
L. S.
Wang
,
J. Phys. Chem. A
114
,
12155
(
2010
).
37.
T. R.
Galeev
,
C.
Romanescu
,
W. L.
Li
,
L. S.
Wang
, and
A. I.
Boldyrev
,
Angew. Chem., Int. Ed.
51
,
2101
(
2012
).
38.
W. L.
Li
,
C.
Romanescu
,
Z. A.
Piazza
, and
L. S.
Wang
,
Phys. Chem. Chem. Phys.
14
,
13663
(
2012
).
39.
L. S.
Wang
,
H. S.
Cheng
, and
J. W.
Fan
,
J. Chem. Phys.
102
,
9480
(
1995
).
40.
L. S.
Wang
and
H.
Wu
, in
Advances in Metal and Semiconductor Clusters
, edited by
M. A.
Duncan
(
JAI Press
,
Greenwich, CT
,
1998
), Vol.
4
, pp.
299
343
.
41.
J.
Akola
,
M.
Manninen
,
H.
Häkkinen
,
U.
Landman
,
X.
Li
, and
L.-S.
Wang
,
Phys. Rev. B
60
,
R11297
(
1999
).
42.
W.
Huang
and
L. S.
Wang
,
Phys. Rev. Lett.
102
,
153401
(
2009
).
43.
J. P.
Perdew
,
K.
Burke
, and
Y.
Wang
,
Phys. Rev. B
54
,
16533
(
1996
).
44.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
78
,
1396
(
1997
).
45.
C.
Adamo
and
V.
Barone
,
J. Chem. Phys.
110
,
6158
(
1999
).
46.
P. J.
Hay
and
W. R.
Wadt
,
J. Chem. Phys.
82
,
299
(
1985
).
47.
K. L.
Schuchardt
,
B. T.
Didier
,
T.
Elsethagen
,
L. S.
Sun
,
V.
Gurumoorthi
,
J.
Chase
,
J.
Li
, and
T. L.
Windus
,
J. Chem. Inf. Model.
47
,
1045
(
2007
).
48.
T. H.
Dunning
,
J. Chem. Phys.
90
,
1007
(
1989
).
49.
R. A.
Kendall
,
T. H.
Dunning
, and
R. J.
Harrison
,
J. Chem. Phys.
96
,
6796
(
1992
).
50.
See supplementary material at http://dx.doi.org/10.1063/1.4798935 for all the optimized low-lying isomers of VB9, NbB9, and TaB9.
51.
52.
G. D.
Purvis
and
R. J.
Bartlett
,
J. Chem. Phys.
76
,
1910
(
1982
).
53.
K.
Raghavachari
,
G. W.
Trucks
,
J. A.
Pople
, and
M.
Head-Gordon
,
Chem. Phys. Lett.
157
,
479
(
1989
).
54.
P. J.
Knowles
,
C.
Hampel
, and
H. J.
Werner
,
J. Chem. Phys.
99
,
5219
(
1993
).
55.
H.
Koch
and
P.
Jorgensen
,
J. Chem. Phys.
93
,
3333
(
1990
).
56.
J. F.
Stanton
and
R. J.
Bartlett
,
J. Chem. Phys.
98
,
7029
(
1993
).
57.
H.
Koch
,
R.
Kobayashi
,
A. S.
de Meras
, and
P.
Jorgensen
,
J. Chem. Phys.
100
,
4393
(
1994
).
58.
M.
Kallay
and
J.
Gauss
,
J. Chem. Phys.
121
,
9257
(
2004
).
59.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
 et al, GAUSSIAN 09, Revision B.01, Gaussian, Inc., Wallingford, CT,
2009
.
60.
M. U.
Varetto
, Molekel 5.4.0.8 (Swiss National Supercomputing Centre, Manno, Switzerland,
2009
).
61.
B.
Cordero
,
V.
Gómez
,
A. E.
Platero-Prats
,
M.
Revés
,
J.
Echeverría
,
E.
Cremades
,
F.
Barragánand
, and
S.
Alvarez
,
Dalton Trans.
2008
,
2832
.
62.
See
I. B.
Bersuker
,
Chem. Rev.
101
,
1067
(
2001
);
[PubMed]
I. B.
Bersuker
,
Chem. Rev.
113
,
1351
(
2013
). “The pseudo-Jahn–Teller effect is the only source of instability and distortions of high-symmetry configurations of polyatomic systems in nondegenerate states, and it contributes essentially to the instability of degenerate states.”
[PubMed]

Supplementary Material

You do not currently have access to this content.