Accurate near-equilibrium potential energy and dipole moment functions have been calculated for the linear coinage-metal cyanides CuCN, AgCN, and AuCN using coupled cluster methods and sequences of correlation consistent basis sets. The explicitly correlated CCSD(T)-F12b method is used for the potential energy surfaces (PESs) with inclusion of core correlation, and is combined with contributions from molecular spin-orbit coupling, scalar relativity, and effects due to higher order electron correlation. The resulting composite PESs are used in both perturbative and variational calculations of the ro-vibrational spectra. In addition to accurate equilibrium geometries, the ro-vibrational spectra are predicted, which are found to be relatively intense in the 200–600 cm−1 range due to the bending and metal–carbon stretching modes. The CN stretch near 2165 cm−1 is also predicted to carry enough intensity to allow its observation by experiment. A strong Fermi-resonance is predicted between the first overtone of the bend and the fundamental of the metal–carbon stretch for both CuCN and AgCN. The heats of formation at 0 K are predicted from their calculated atomization energies to be 89.8, 88.6, and 104.5 kcal mol−1 for CuCN, AgCN, and AuCN, respectively.

1.
S. H.
Bertz
and
E. H.
Fairchild
, in
Encyclopedia of Reagents for Organic Synthesis
, edited by
L.
Paquette
(
Wiley
,
New York
,
1995
), p.
1341
.
2.
J.
Gómez-Díaz
,
K.
Honkala
, and
N.
López
,
Surf. Sci.
604
,
1552
(
2010
).
3.
X.
Wu
,
Z.
Qin
,
H.
Xie
,
R.
Cong
,
X.
Wu
,
Z.
Tang
, and
H.
Fan
,
J. Phys. Chem. A
114
,
12839
(
2010
).
4.
O.
Dietz
,
V.
Rayon
, and
G.
Frenking
,
Inorg. Chem.
42
,
4977
(
2003
);
[PubMed]
A.
Veldkamp
and
G.
Frenking
,
Organomettalics
12
,
4613
(
1993
).
5.
P.
Zaleski-Ejgierd
,
M.
Patzschke
, and
P.
Pyykkö
,
J. Chem. Phys.
128
,
224303
(
2008
).
6.
D. B.
Grotjahn
,
M.
Brewster
, and
L. M.
Ziurys
,
J. Am. Chem. Soc.
124
,
5895
(
2002
).
7.
T.
Okabayashi
,
E. Y.
Okabayashi
,
F.
Koto
,
T.
Ishida
, and
M.
Tanimoto
,
J. Am. Chem. Soc.
131
,
11712
(
2009
).
8.
A.
Boldyrev
,
X.
Li
, and
L.
Wang
,
J. Chem. Phys.
112
,
3627
(
2000
).
9.
A.
Paul
,
Y.
Yamaguchi
, and
H. F.
Schaefer
,
J. Chem. Phys.
127
,
154324
(
2007
).
10.
P.
Schwerdtfeger
and
M.
Lein
, in
Gold Chemistry
, edited by
F.
Mohr
(
Wiley
,
Weinheim
,
2009
), p.
183
.
11.
P.
Schwerdtfeger
,
P. D. W.
Boyd
,
A. K.
Burrell
,
W. T.
Robinson
, and
M. J.
Taylor
,
Inorg. Chem.
29
,
3593
(
1990
).
12.
D.-K.
Lee
,
I. S.
Lim
,
Y. S.
Lee
,
D.
Hagebaum-Reignier
, and
G.-H.
Jeung
,
J. Chem. Phys.
126
,
244313
(
2007
);
[PubMed]
J.
Seminario
,
A.
Zacarias
, and
J.
Tour
,
J. Am. Chem. Soc.
121
,
411
(
1999
).
13.
H.-J.
Werner
,
T. B.
Adler
,
G.
Knizia
, and
F. R.
Manby
, in
Recent Progress in Coupled Cluster Methods: Theory and Applications
, edited by
P.
Čársky
,
J.
Paldus
, and
J.
Pittner
(
Springer
,
Berlin
,
2010
), p.
573
;
D.
Tew
,
C.
Hättig
,
R.
Bachorz
, and
W.
Klopper
, in
Recent Progress in Coupled Cluster Methods: Theory and Applications
, edited by
P.
Čársky
,
J.
Paldus
, and
J.
Pittner
(
Springer
,
Berlin
,
2010
), p.
535
.
14.
T. B.
Adler
,
G.
Knizia
, and
H.-J.
Werner
,
J. Chem. Phys.
127
,
221106
(
2007
).
15.
G.
Knizia
,
T. B.
Adler
, and
H.-J.
Werner
,
J. Chem. Phys.
130
,
054104
(
2009
).
16.
M.
Douglas
and
N. M.
Kroll
,
Ann. Phys. (N.Y.)
82
,
89
(
1974
);
G.
Jansen
and
B. A.
Hess
,
Phys. Rev. A
39
,
6016
(
1989
).
17.
K. A.
Peterson
,
T. B.
Adler
, and
H.-J.
Werner
,
J. Chem. Phys.
128
,
084102
(
2008
).
18.
K. A.
Peterson
and
C.
Puzzarini
,
Theor. Chem. Acc.
114
,
283
(
2005
).
19.
D.
Figgen
,
G.
Rauhut
,
M.
Dolg
, and
H.
Stoll
,
Chem. Phys.
311
,
227
(
2005
).
20.
F.
Weigend
,
A.
Köhn
, and
C.
Hättig
,
J. Chem. Phys.
116
,
3175
(
2002
).
21.
C.
Hättig
,
Phys. Chem. Chem. Phys.
7
,
59
(
2005
); (unpublished), available from the Turbomole program library.
22.
F.
Weigend
,
J. Comput. Chem.
29
,
167
(
2008
).
23.
F.
Weigend
,
Phys. Chem. Chem. Phys.
4
,
4285
(
2002
).
24.
J. G.
Hill
,
K. A.
Peterson
,
G.
Knizia
, and
H.-J.
Werner
,
J. Chem. Phys.
131
,
194105
(
2009
).
25.
E. F.
Valeev
,
Chem. Phys. Lett.
395
,
190
(
2004
).
26.
K. E.
Yousaf
and
K. A.
Peterson
,
J. Chem. Phys.
129
,
184108
(
2008
);
[PubMed]
K. E.
Yousaf
and
K. A.
Peterson
,
Chem. Phys. Lett.
476
,
303
(
2009
).
27.
J. G.
Hill
and
K. A.
Peterson
,
J. Chem. Theory Comput.
8
,
518
(
2012
).
28.
G.
Knizia
and
H.-J.
Werner
,
J. Chem. Phys.
128
,
154103
(
2008
).
29.
P. J.
Knowles
,
C.
Hampel
, and
H.-J.
Werner
,
J. Chem. Phys.
99
,
5219
(
1993
).
30.
G. E.
Scuseria
and
H. F.
Schaefer
,
Chem. Phys. Lett.
152
,
382
(
1988
).
31.
J. G.
Hill
,
S.
Mazumder
, and
K. A.
Peterson
,
J. Chem. Phys.
132
,
054108
(
2010
).
32.
W.
de Jong
,
R.
Harrison
, and
D.
Dixon
,
J. Chem. Phys.
114
,
48
(
2001
).
33.
K. A.
Peterson
and
T.
Dunning
 Jr.
,
J. Chem. Phys.
117
,
10548
(
2002
).
34.
M.
Reiher
and
A.
Wolf
,
J. Chem. Phys.
121
,
2037
(
2004
);
[PubMed]
M.
Reiher
and
A.
Wolf
,
J. Chem. Phys.
121
,
10945
(
2004
).
[PubMed]
35.
T. H.
Dunning
 Jr.
,
J. Chem. Phys.
90
,
1007
(
1989
).
36.
D.
Figgen
,
K. A.
Peterson
,
M.
Dolg
, and
H.
Stoll
,
J. Chem. Phys.
130
,
164108
(
2009
).
37.
J.
Noga
and
R. J.
Bartlett
,
J. Chem. Phys.
86
,
7041
(
1987
).
38.
Y. J.
Bomble
,
J. F.
Stanton
,
M.
Kallay
, and
J.
Gauss
,
J. Chem. Phys.
123
,
054101
(
2005
).
39.
M.
Kallay
and
J.
Gauss
,
J. Chem. Phys.
123
,
214105
(
2005
).
40.
L.
Visscher
,
T. J.
Lee
, and
K.
Dyall
,
J. Chem. Phys.
105
,
8769
(
1996
).
41.
J.
Sikkema
,
L.
Visscher
,
T.
Saue
, and
M.
Ilias
,
J. Chem. Phys.
131
,
124116
(
2009
).
42.
K.
Dyall
,
J. Chem. Phys.
100
,
2118
(
1994
).
43.
N. B.
Balabanov
and
K. A.
Peterson
,
J. Chem. Phys.
123
,
064107
(
2005
).
44.
K.
Dyall
,
Theor. Chem. Acc.
117
,
483
(
2007
).
45.
C. E.
Moore
,
Atomic Energy Levels
(
Office of Standard Reference Data, National Bureau of Standards
,
Washington, DC
,
1971
), NSRDS-NBS 35.
46.
DIRAC, a relativistic ab initio electronic structure program, release DIRAC11,
2011
, written by
R.
Bast
,
H. J. Aa.
Jensen
,
T.
Saue
, and
L.
Visscher
, with contributions from
V.
Bakken
,
K. G.
Dyall
,
S.
Dubillard
,
U.
Ekström
,
E.
Eliav
,
T.
Enevoldsen
,
T.
Fleig
,
O.
Fossgaard
,
A. S. P.
Gomes
,
T.
Helgaker
,
J. K.
Lærdahl
,
J.
Henriksson
,
M.
Iliaš
,
Ch. R.
Jacob
,
S.
Knecht
,
C. V.
Larsen
,
H. S.
Nataraj
,
P.
Norman
,
G.
Olejniczak
,
J.
Olsen
,
J. K.
Pedersen
,
M.
Pernpointner
,
K.
Ruud
,
P.
Sałek
,
B.
Schimmelpfennig
,
J.
Sikkema
,
A. J.
Thorvaldsen
,
J.
Thyssen
,
J.
van Stralen
,
S.
Villaume
,
O.
Visser
,
T.
Winther
, and
S.
Yamamoto
, see http://dirac.chem.vu.nl.a
47.
H.-J.
Werner
,
P. J.
Knowles
,
G.
Knizia
,
F. R.
Manby
,
M.
Schütz
 et al., MOLPRO, version 2010.1, a package of ab initio programs,
2010
, see http://www.molpro.net;
H.-J.
Werner
,
P. J.
Knowles
,
G.
Knizia
,
F. R.
Manby
, and
M.
Schütz
,
WIREs Comput. Mol. Sci.
2
,
242
(
2012
).
48.
MRCC, a string-based quantum chemical program suite, Budapest University of Technology and Economics,
2001
;
M.
Kállay
and
P. R.
Surján
,
J. Chem. Phys.
115
,
2945
(
2001
).
49.
A. R.
Hoy
,
I. M.
Mills
, and
G.
Strey
,
Mol. Phys.
24
,
1265
(
1972
);
I. M.
Mills
, in
Molecular Spectroscopy: Modern Research
, edited by
K. N.
Rao
and
C. W.
Mathews
(
Academic
,
New York
,
1972
), Vol.
1
.
50.
J.
Senekowitsch
, Ph.D. dissertation,
Universität Frankfurt
, Frankfurt, Germany,
1988
.
51.
See supplementary material at http://dx.doi.org/10.1063/1.4798638 for Tables SI–SIII and the cc-pwCVTZ-DK+4f basis sets.
52.
A. O.
Mitrushchenkov
,
J. Chem. Phys.
136
,
024108
(
2012
).
53.
J. G.
Hill
,
A. O.
Mitrushchenkov
,
K. E.
Yousaf
, and
K. A.
Peterson
,
J. Chem. Phys.
135
,
144309
(
2011
).
54.
K. A.
Peterson
,
A. O.
Mitrushchenkov
, and
J. S.
Francisco
,
Chem. Phys.
346
,
34
(
2008
).
55.
R. A.
Kendall
,
T. H.
Dunning
 Jr.
, and
R. J.
Harrison
,
J. Chem. Phys.
96
,
6796
(
1992
).
56.
D. T.
Colbert
and
W. H.
Miller
,
J. Chem. Phys.
96
,
1982
(
1992
).
57.
W. D.
Allen
,
Y.
Yamaguchi
,
A. G.
Csaszar
,
D. A.
Clabo
 Jr.
,
R. B.
Remington
, and
H. F.
Schaefer
 III
,
Chem. Phys.
145
,
427
(
1990
).
58.
G.
Amat
and
M.
Pimbert
,
J. Mol. Spectrosc.
16
,
278
(
1965
);
D. M.
Papousek
and
M. R.
Aliev
,
Molecular Rotation-Vibration Spectra
(
North-Holland
,
Amsterdam
,
1982
).
59.
M. D.
Harmony
,
Vibrational Spectra and Structure
(
Elsevier
,
1999
), Vol.
24
, p.
1
.
60.
J.
Kraitchman
,
Am. J. Phys.
21
,
17
(
1953
).
61.
W. R.
Stevens
,
B.
Ruscic
, and
T.
Baer
,
J. Phys. Chem. A
114
,
13134
(
2010
).
62.
J. D.
Cox
,
D. D.
Wagman
, and
V. A.
Medvedev
,
CODATA Key Values for Thermodynamics
(
Hemisphere Publishing Corp.
,
New York
,
1989
).
63.
D. D.
Wagman
,
W. H.
Evans
,
V. B.
Parker
,
R. H.
Schumm
,
I.
Halow
,
S. M.
Bailey
,
K. L.
Churney
, and
R. L.
Nuttall
,
J. Phys. Chem. Ref. Data
11
(
Suppl. 2
) (
1982
).
64.
J.
Senekowitsch
,
S.
Carter
,
A.
Zilch
,
H.-J.
Werner
,
N. C.
Handy
, and
P.
Rosmus
,
J. Chem. Phys.
90
,
783
(
1989
).

Supplementary Material

You do not currently have access to this content.