In this paper we revisit the derivation of equations of motion for coarse-grained (CG) particles from the microscopic Hamiltonian dynamics of the underlying atomistic system in equilibrium. The derivation is based on the projection operator method and time-convolution equation. We demonstrate that due to the energy exchange between CG and intraparticle phase space coordinates in the microscopic system, the choice of projection operator is not unique, leading to different CG equations of motion that have the form of the nonlinear generalized Langevin equation (GLE). We derive the idempotence properties for the projection operators along the system trajectories and show that these properties result in streaming terms of the respective GLEs that are conservative forces and allow the expression of the non-conservative forces explicitly through thermodynamic averages, which can be measured from the microscopic simulations. The difference between GLEs that are presented herein lies in how the non-conservative forces are partitioned into dissipative and projected contributions. We compute the projected force and analyze conditions under which the projected (stochastic) force is orthogonal to (uncorrelated with) the momenta of CG particles, therefore justifying a transition to a framework of stochastic differential equations. We show that a position- and momentum-independent memory function appears only if the projected force is fully decoupled from the past CG positions and momenta, respectively. In the case of non-vanishing correlations between the projected force and the CG coordinates in past times, we derive explicitly the position- and momentum-dependent memory function in a form of projection onto a space spanned by N-order Hermite polynomials. The expressions presented herein can be used to construct a hierarchy of thermodynamically consistent CG models with momentum-dependent memory functions. They can also be used to design computational schemes for obtaining the parameters for GLEs and their variants such as dissipative particle dynamics equations from the microscopic data. We illustrate these applications by presenting the GLE with a memory function that is quadratic in the particle momenta.

1.
R. D.
Groot
and
P. B.
Warren
,
J. Chem. Phys.
107
(
11
),
4423
(
1997
).
3.
J. W.
Chu
,
G. S.
Ayton
,
S.
Izvekov
, and
G. A.
Voth
,
Mol. Phys.
105
(
2-3
),
167
(
2007
).
4.
W. G.
Noid
,
G. S.
Ayton
,
S.
Izvekov
, and
G. A.
Voth
, in
Coarse-Graining of Condensed Phase and Biomolecular Systems
, edited by
G. A.
Voth
(
Taylor & Francis
,
Boca Raton
,
2008
), p.
21
.
5.
C.
Peter
and
K.
Kremer
,
Faraday Discuss.
144
,
9
(
2010
).
6.
S.
Nakajima
,
Prog. Theor. Phys.
20
(
6
),
948
(
1958
).
7.
R.
Zwanzig
,
J. Chem. Phys.
33
(
5
),
1338
(
1960
).
8.
R.
Zwanzig
,
Phys. Rev.
124
(
4
),
983
(
1961
).
10.
H.
Mori
,
Prog. Theor. Phys.
33
(
3
),
423
(
1965
).
11.
B.
Robertson
,
Phys. Rev.
144
(
1
),
151
(
1966
).
12.
K.
Kawasaki
and
J. D.
Gunton
,
Phys. Rev. A
8
(
4
),
2048
(
1973
).
13.
14.
E.
Fick
and
G.
Sauermann
,
The Quantum Statistics of Dynamic Processes
(
Springer-Verlag
,
Berlin
,
1983
).
15.
R.
Zwanzig
,
Nonequilibrium Statistical Mechanics
(
Oxford University Press
,
New York
,
2004
).
16.
T.
Koide
,
Phys. Rev. E
75
(
6
),
060103
(
2007
).
17.
T.
Koide
and
T.
Kodama
,
Phys. Rev. E
78
(
5
),
051107
(
2008
).
18.
T.
Koide
,
Phys. Rev. E
72
(
2
),
026135
(
2005
).
19.
P.
Espanol
,
J. G.
Anero
, and
I.
Zuniga
,
J. Chem. Phys.
131
(
24
),
244117
(
2009
).
20.
P.
Espanol
and
H.
Lowen
,
J. Chem. Phys.
131
(
24
),
244101
(
2009
).
21.
T.
Kinjo
and
S.-a.
Hyodo
,
Phys. Rev. E
75
(
5
),
051109
(
2007
).
23.
E.
Darve
,
J.
Solomon
, and
A.
Kia
,
Proc. Natl. Acad. Sci. U.S.A.
106
(
27
),
10884
(
2009
).
24.
C.
Hijón
,
P.
Espanol
,
E.
Vanden-Eijnden
, and
R.
Delgado-Buscalioni
,
Faraday Discuss.
144
,
301
(
2010
).
25.
P.
Español
,
Phys. Rev. E
53
(
2
),
1572
(
1996
).
26.
R. L. C.
Akkermans
and
W. J.
Briels
,
J. Chem. Phys.
113
(
15
),
6409
(
2000
).
27.
J. L.
Rodgers
and
W. A.
Nicewander
,
Am. Stat.
42
(
1
),
59
(
1988
).
28.
H.
Lei
,
B.
Caswell
, and
G. E.
Karniadakis
,
Phys. Rev. E
81
(
2
),
026704
(
2010
).
29.
D.
Kauzlaric
,
J. T.
Meier
,
P.
Espanol
,
S.
Succi
,
A.
Greiner
, and
J. G.
Korvink
,
J. Chem. Phys.
134
(
6
),
064106
(
2011
).
30.
L.
Gao
and
W.
Fang
,
J. Chem. Phys.
135
(
18
),
184101
(
2011
).
31.
S.
Izvekov
,
P. W.
Chung
, and
B. M.
Rice
,
J. Chem. Phys.
133
(
6
),
064109
(
2010
).
32.
M. E.
Johnson
,
T.
Head-Gordon
, and
A. A.
Louis
,
J. Chem. Phys.
126
(
14
),
144509
(
2007
).
33.
S.
Izvekov
and
G. A.
Voth
,
J. Chem. Phys.
123
(
13
),
134105
(
2005
).
34.
S.
Izvekov
and
G. A.
Voth
,
J. Phys. Chem. B
109
(
7
),
2469
(
2005
).
35.
W. G.
Noid
,
J. W.
Chu
,
G. S.
Ayton
,
V.
Krishna
,
S.
Izvekov
,
G. A.
Voth
,
A.
Das
, and
H. C.
Andersen
,
J. Chem. Phys.
128
(
24
),
244114
(
2008
).
36.
W. G.
Noid
,
P.
Liu
,
Y.
Wang
,
J. W.
Chu
,
G. S.
Ayton
,
S.
Izvekov
,
H. C.
Andersen
, and
G. A.
Voth
,
J. Chem. Phys.
128
(
24
),
244115
(
2008
).
37.
A.
Das
and
H. C.
Andersen
,
J. Chem. Phys.
131
(
3
),
034102
(
2009
).
38.
V.
Krishna
,
W. G.
Noid
, and
G. A.
Voth
,
J. Chem. Phys.
131
(
2
),
024103
(
2009
).
39.
A.
Das
and
H. C.
Andersen
,
J. Chem. Phys.
132
(
16
),
164106
(
2010
).
40.
L.
Larini
,
L. Y.
Lu
, and
G. A.
Voth
,
J. Chem. Phys.
132
(
16
),
164107
(
2010
).
41.
A.
Chaimovich
and
M. S.
Shell
,
Phys. Rev. E
81
(
6
),
060104
(
2010
).
42.
A.
Chaimovich
and
M. S.
Shell
,
J. Chem. Phys.
134
(
9
),
094112
(
2011
).
43.
A.
Das
and
H. C.
Andersen
,
J. Chem. Phys.
136
(
19
),
194113
(
2012
).
44.
A.
Das
and
H. C.
Andersen
,
J. Chem. Phys.
136
(
19
),
194114
(
2012
).
45.
A.
Das
,
L.
Lu
,
H. C.
Andersen
, and
G. A.
Voth
,
J. Chem. Phys.
136
(
19
),
194115
(
2012
).
46.
M. S.
Shell
,
J. Chem. Phys.
137
(
8
),
084503
(
2012
).
47.
S.
Nordholm
and
R.
Zwanzig
,
J. Stat. Phys.
13
(
4
),
347
(
1975
).
48.
M.
Berkowitz
,
J. D.
Morgan
, and
J. A.
McCammon
,
J. Chem. Phys.
78
(
6
),
3256
(
1983
).
49.
A. J.
Chorin
,
O. H.
Hald
, and
R.
Kupferman
,
Proc. Natl. Acad. Sci. U.S.A.
97
(
7
),
2968
(
2000
).
50.
A. J.
Chorin
,
O. H.
Hald
, and
R.
Kupferman
,
Physica D
166
(
3–4
),
239
(
2002
).
51.
O. F.
Lange
and
H.
Grubmuller
,
J. Chem. Phys.
124
(
21
),
214903
(
2006
).
52.
J.
Xing
and
K. S.
Kim
,
J. Chem. Phys.
134
(
4
),
044132
(
2011
).
53.
C. R.
Willis
and
R. H.
Picard
,
Phys. Rev. A
9
(
3
),
1343
(
1974
).
54.
F.
Shibata
and
N.
Hashitsume
,
Z. Phys. B: Condens. Matter
34
(
2
),
197
(
1979
).
55.
S.
Kawai
and
T.
Komatsuzaki
,
J. Chem. Phys.
134
(
11
),
114523
(
2011
).
56.
C. E.
Colosqui
,
Phys. Rev. E
81
(
2
),
026702
(
2010
).
57.
58.
C.
Uchiyama
and
F.
Shibata
,
Phys. Rev. E
60
(
3
),
2636
(
1999
).
59.
M.
Tokuyama
and
H.
Mori
,
Prog. Theor. Phys.
55
(
2
),
411
(
1976
).
60.
J. E.
Straub
,
M.
Borkovec
, and
B. J.
Berne
,
J. Chem. Phys.
84
(
3
),
1788
(
1986
).
You do not currently have access to this content.