We study the relationship between local structural ordering and dynamical heterogeneities in a model glass-forming liquid, the Wahnström mixture. A novel cluster-based approach is used to detect local energy minimum polyhedral clusters and local crystalline environments. A structure-specific time correlation function is then devised to determine their temporal stability. For our system, the lifetime correlation function for icosahedral clusters decays far slower than for those of similarly sized but topologically distinct clusters. Upon cooling, the icosahedra form domains of increasing size and their lifetime increases with the size of the domains. Furthermore, these long-lived domains lower the mobility of neighboring particles. These structured domains show correlations with the slow regions of the dynamical heterogeneities that form on cooling towards the glass transition. Although icosahedral clusters with a particular composition and arrangement of large and small particles are structural elements of the crystal, we find that most icosahedral clusters lack such order in composition and arrangement and thus local crystalline ordering makes only a limited contribution to this process. Finally, we characterize the spatial correlation of the domains of icosahedra by two structural correlation lengths and compare them with the four-point dynamic correlation length. All the length scales increase upon cooling, but in different ways.

1.
L.
Berthier
and
G.
Biroli
,
Rev. Mod. Phys.
83
,
587
(
2011
).
2.
W.
Götze
,
Complex Dynamics of Glass-Forming Liquids: A Mode-Coupling Theory
(
Oxford University Press
,
Oxford
,
2008
).
3.
M. M.
Hurley
and
P.
Harrowell
,
Phys. Rev. E
52
,
1694
(
1995
).
4.
M.
Ediger
,
Annu. Rev. Phys. Chem.
51
,
99
(
2000
).
5.
L.
Berthier
,
G.
Biroli
,
J. P.
Bouchaud
,
L.
Cipelletti
, and
W.
Van Saarloos
,
Dynamical Heterogeneities in Glasses, Colloids, and Granular Media
(
Oxford University Press
,
Oxford
,
2011
).
6.
F. C.
Frank
,
Proc. R. Soc. London, Ser. A
215
,
43
(
1952
).
7.
H.
Shintani
and
H.
Tanaka
,
Nat. Phys.
2
,
200
(
2006
).
8.
H.
Tanaka
,
T.
Kawasaki
,
H.
Shintani
, and
K.
Watanabe
,
Nature Mater.
9
,
324
(
2010
).
9.
F.
Sausset
and
G.
Tarjus
,
Phys. Rev. Lett.
104
,
065701
(
2010
).
10.
M.
Leocmach
and
H.
Tanaka
,
Nat. Comm.
3
,
974
(
2012
).
11.
H.
Jónsson
and
H.
Andersen
,
Phys. Rev. Lett.
60
,
2295
(
1988
).
12.
T.
Kondo
and
K.
Tsumuraya
,
J. Chem. Phys.
94
,
8220
(
1991
).
13.
T.
Tomida
and
T.
Egami
,
Phys. Rev. B
52
,
3290
(
1995
).
14.
R.
Jullien
,
P.
Jund
,
D.
Caprion
, and
D.
Quitmann
,
Phys. Rev. E
54
,
6035
(
1996
).
15.
M.
Dzugutov
,
S. I.
Simdyankin
, and
F. H. M.
Zetterling
,
Phys. Rev. Lett.
89
,
195701
(
2002
).
16.
E.
Lerner
,
I.
Procaccia
, and
J.
Zylberg
,
Phys. Rev. Lett.
102
,
125701
(
2009
).
17.
U. R.
Pedersen
,
T. B.
Schrøder
,
J. C.
Dyre
, and
P.
Harrowell
,
Phys. Rev. Lett.
104
,
105701
(
2010
).
18.
D.
Coslovich
,
Phys. Rev. E
83
,
051505
(
2011
).
19.
G.
Tarjus
,
S. A.
Kivelson
,
Z.
Nussinov
, and
P.
Viot
,
J. Phys.: Condens. Matter
17
,
R1143
(
2005
).
20.
T.
Schenk
,
D.
Holland-Moritz
,
V.
Simonet
,
R.
Bellissent
, and
D. M.
Herlach
,
Phys. Rev. Lett.
89
,
075507
(
2002
).
21.
D. B.
Miracle
,
Nature Mater.
3
,
697
(
2004
).
22.
G.
Biroli
,
J. P.
Bouchaud
,
A.
Cavagna
,
T. S.
Grigera
, and
P.
Verrochio
,
Nat. Phys.
4
,
771
(
2008
).
23.
M.
Mosayebi
,
E.
Del Gado
,
P.
Ilg
, and
H. C.
Öttinger
,
Phys. Rev. Lett.
104
,
205704
(
2010
).
24.
F.
Sausset
and
D.
Levine
,
Phys. Rev. Lett.
107
,
045501
(
2011
).
25.
W.
Kob
,
S.
Roldán-Vargas
, and
L.
Berthier
,
Nat. Phys.
8
,
164
(
2011
).
26.
C.
Cammarota
and
G.
Biroli
,
Europhys. Lett.
98
,
36005
(
2012
).
27.
G. M.
Hocky
,
T. E.
Markland
, and
D. R.
Reichman
,
Phys. Rev. Lett.
108
,
225506
(
2012
).
28.
A. J.
Dunleavy
,
K.
Wiesner
, and
C. P.
Royall
,
Phys. Rev. E
86
,
041505
(
2012
).
29.
B.
Charbonneau
,
P.
Charbonneau
, and
G.
Tarjus
,
Phys. Rev. Lett.
108
,
035701
(
2012
).
30.
S.
Karmakar
and
I.
Procaccia
, e-print arXiv:1204.6634 (
2012
).
31.
A.
Widmer-Cooper
and
P.
Harrowell
,
Phys. Rev. Lett.
96
,
185701
(
2006
).
32.
M.
Mosayebi
,
E.
Del Gado
,
P.
Ilg
, and
H. C.
Öttinger
,
J. Chem. Phys.
137
,
024504
(
2012
).
33.
M.
Dzugutov
,
Phys. Rev. Lett.
70
,
2924
(
1993
).
34.
G.
Wahnström
,
Phys. Rev. A
44
,
3752
(
1991
).
35.
S. D.
Stoddard
and
J.
Ford
,
Phys. Rev. A
8
,
1504
(
1973
).
36.
S.
Nose
,
J. Phys. Soc. Jpn.
70
,
75
(
2001
).
37.
J. P. K.
Doye
and
L.
Meyer
,
Phys. Rev. Lett.
95
,
063401
(
2005
).
38.
S. R.
Williams
, e-print arXiv:0705.0203 (
2007
).
39.
C. P.
Royall
,
S. R.
Williams
,
T.
Ohtsuka
, and
H.
Tanaka
,
Nature Mater.
7
,
556
(
2008
).
40.
S.
Mossa
and
G.
Tarjus
,
J. Chem. Phys.
119
,
8069
(
2003
).
41.
A.
Malins
, Ph.D. dissertation,
University of Bristol
,
2013
.
42.
J. P. K.
Doye
,
D. J.
Wales
, and
R. S.
Berry
,
J. Chem. Phys.
103
,
4234
(
1995
).
43.
D. J.
Wales
and
J. P. K.
Doye
,
J. Phys. Chem. A
101
,
5111
(
1997
).
44.
See http://www-wales.ch.cam.ac.uk/GMIN/ for “GMIN: A program for finding global minima and calculating thermodynamic properties from basin-sampling.”
45.
See http://www-wales.ch.cam.ac.uk/CCD.html for “The Cambridge Cluster Database.”
46.
C.
Cammarota
and
G.
Biroli
,
Proc. Natl. Acad. Sci. U.S.A.
109
,
8850
(
2012
).
47.
N.
Lačević
,
F. W.
Starr
,
T. B.
Schrøder
, and
S. C.
Glotzer
,
J. Chem. Phys.
119
,
7372
(
2003
).
48.
S.
Karmakar
,
C.
Dasgupta
, and
S.
Sastry
,
Proc. Natl. Acad. Sci. U.S.A.
106
,
3675
(
2009
).
You do not currently have access to this content.