The shear modulus G of two glass-forming colloidal model systems in d = 3 and d = 2 dimensions is investigated by means of, respectively, molecular dynamics and Monte Carlo simulations. Comparing ensembles where either the shear strain γ or the conjugated (mean) shear stress τ are imposed, we compute G from the respective stress and strain fluctuations as a function of temperature T while keeping a constant normal pressure P. The choice of the ensemble is seen to be highly relevant for the shear stress fluctuations μF(T) which at constant τ decay monotonously with T following the affine shear elasticity μA(T), i.e., a simple two-point correlation function. At variance, non-monotonous behavior with a maximum at the glass transition temperature Tg is demonstrated for μF(T) at constant γ. The increase of G below Tg is reasonably fitted for both models by a continuous cusp singularity, G(T)∝(1 − T/Tg)1/2, in qualitative agreement with recent theoretical predictions. It is argued, however, that longer sampling times may lead to a sharper transition.

1.
M.
Born
and
K.
Huang
,
Dynamical Theory of Crystal Lattices
(
Clarendon
,
Oxford
,
1954
).
2.
P. M.
Chaikin
and
T. C.
Lubensky
,
Principles of Condensed Matter Physics
(
Cambridge University Press
,
1995
).
3.
D. C.
Wallace
, in
Solid State Physics: Advances in Research and Applications
, edited by
H.
Ehrenreich
,
F.
Seitz
, and
D.
Turnbull
(
Academic
,
New York/London
,
1970
), Vol.
25
, p.
300
.
4.
L. D.
Landau
and
E. M.
Lifshitz
,
Theory of Elasticity
(
Pergamon
,
1959
).
5.
D. R.
Squire
,
A. C.
Holt
, and
W. G.
Hoover
,
Physica
42
,
388
(
1969
).
6.
J. F.
Lutsko
,
J. Appl. Phys.
65
,
2991
(
1989
).
7.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulation – From Algorithms to Applications
, 2nd ed. (
Academic
,
San Diego
,
2002
).
8.
B.
Schnell
,
H.
Meyer
,
C.
Fond
,
J.
Wittmer
, and
J.
Baschnagel
,
Eur. Phys. J. E
34
,
97
(
2011
).
9.
J. S.
Rowlinson
,
Liquids and Liquid Mixtures
(
Butterworths Scientific
,
London
,
1959
).
10.
M.
Allen
and
D.
Tildesley
,
Computer Simulation of Liquids
(
Oxford University Press
,
Oxford
,
1994
).
11.
J. R.
Ray
,
M. C.
Moody
, and
A.
Rahman
,
Phys. Rev. B
32
,
733
(
1985
).
12.
J.-L.
Barrat
,
J.-N.
Roux
,
J.-P.
Hansen
, and
M. L.
Klein
,
Europhys. Lett.
7
,
707
(
1988
).
13.
O.
Farago
and
Y.
Kantor
,
Phys. Rev. E
61
,
2478
(
2000
).
14.
J. P.
Wittmer
,
A.
Tanguy
,
J.-L.
Barrat
, and
L.
Lewis
,
Europhys. Lett.
57
,
423
(
2002
).
15.
A.
Tanguy
,
J. P.
Wittmer
,
F.
Leonforte
, and
J.-L.
Barrat
,
Phys. Rev. B
66
,
174205
(
2002
).
16.
A.
Tanguy
,
F.
Leonforte
,
J. P.
Wittmer
, and
J.-L.
Barrat
,
Appl. Surf. Sci.
226
,
282
(
2004
).
17.
F.
Léonforte
,
R.
Boissière
,
A.
Tanguy
,
J. P.
Wittmer
, and
J.-L.
Barrat
,
Phys. Rev. B
72
,
224206
(
2005
).
18.
C.
Maloney
and
A.
Lemaître
,
Phys. Rev. Lett.
93
,
195501
(
2004
).
19.
J.-L.
Barrat
, in
Computer Simulations in Condensed Matter Systems: From Materials to Chemical Biology
, edited by
M.
Ferrario
,
G.
Ciccotti
, and
K.
Binder
(
Springer
,
Berlin/Heidelberg
,
2006
), Vol.
704
, pp.
287
307
.
20.
K.
van Workum
and
J.
de Pablo
,
Phys. Rev. E
67
,
011505
(
2003
).
21.
K.
Yoshimoto
,
T.
Jain
,
K.
van Workum
,
P.
Nealey
, and
J.
de Pablo
,
Phys. Rev. Lett.
93
,
175501
(
2004
).
22.
N.
Schulmann
,
H.
Xu
,
H.
Meyer
,
P.
Polińska
,
J.
Baschnagel
, and
J. P.
Wittmer
,
Eur. Phys. J. E
35
,
93
(
2012
).
23.
A.
Zaccone
and
E.
Terentjev
, preprint arXiv:1212.2020 (
2013
).
24.
F.
Léonforte
,
A.
Tanguy
,
J. P.
Wittmer
, and
J.-L.
Barrat
,
Phys. Rev. Lett.
97
,
055501
(
2006
).
25.
M.
Tsamados
,
A.
Tanguy
,
C.
Goldenberg
, and
J.-L.
Barrat
,
Phys. Rev. E
80
,
026112
(
2009
).
26.
G.
Papakonstantopoulos
,
R.
Riggleman
,
J. L.
Barrat
, and
J. J.
de Pablo
,
Phys. Rev. E
77
,
041502
(
2008
).
27.
D. P.
Landau
and
K.
Binder
,
A Guide to Monte Carlo Simulations in Statistical Physics
(
Cambridge University Press
,
Cambridge
,
2000
).
28.
S.
Ulrich
,
X.
Mao
,
P.
Goldbart
, and
A.
Zippelius
,
Europhys. Lett.
76
,
677
(
2006
).
29.
G.
Parisi
and
F.
Zamponi
,
Rev. Mod. Phys.
82
,
789
(
2010
).
30.
H.
Yoshino
and
M.
Mézard
,
Phys. Rev. Lett.
105
,
015504
(
2010
).
31.
H.
Yoshino
,
J. Chem. Phys.
136
,
214108
(
2012
).
32.
G.
Szamel
and
E.
Flenner
,
Phys. Rev. Lett.
107
,
105505
(
2011
).
33.
C.
Klix
,
F.
Ebert
,
F.
Weysser
,
M.
Fuchs
,
G.
Maret
, and
P.
Keim
,
Phys. Rev. Lett.
109
,
178301
(
2012
).
34.
W.
Götze
,
Complex Dynamics of Glass-Forming Liquids: A Mode-Coupling Theory
(
Oxford University Press
,
Oxford
,
2009
).
35.
S. J.
Plimpton
,
J. Comput. Phys.
117
,
1
(
1995
).
36.
T.
Mason
and
D.
Weitz
,
Phys. Rev. Lett.
75
,
2770
(
1995
).
37.
E.
del Gado
and
W.
Kob
,
J. Non-Newtonian Fluid Mech.
149
,
28
(
2008
).
38.
A.
Zilman
,
J.
Kieffer
,
F.
Molino
,
G.
Porte
, and
S. A.
Safran
,
Phys. Rev. Lett.
91
,
015901
(
2003
).
39.
S.
Senguptal
,
P.
Nielaba
,
M.
Rao
, and
K.
Binder
,
Phys. Rev. E
61
,
1072
(
2000
).
40.
H. B.
Callen
,
Thermodynamics and an Introduction to Thermostatistics
(
Wiley
,
New York
,
1985
).
41.
We have computed the static correlation function |$\beta V\langle \delta \hat{\gamma }\delta \hat{\tau }\rangle _{\tau }$|βVδγ̂δτ̂τ for a broad range of temperatures and pressures for both NVτT- and NPτT-ensembles. Converging rapidly to unity, this confirms that Eq. (8) holds to a high accuracy well up into the liquid regime.
42.
H.
Xu
,
J.
Wittmer
,
P.
Polińska
, and
J.
Baschnagel
,
Phys. Rev. E
86
,
046705
(
2012
).
43.
For the simplicity of the notation we assume that X is not the inner energy U. For a more thorough systematic theoretical description it is necessary to define the “entropic intensive variable” J ≡ ∂S(X)/∂X with S(X) being the entropy.40 If XU, one has J = −I/T.40 These entropic intensive variables are used (for good reasons) in Ref. 45. Note that expressing Eq. (15) in terms of I, rather than in terms of J, changes the signs.
44.
There is considerable freedom for defining |$\hat{I}$|Î as long as the average I does not change. The experimentally natural choice for |$\hat{I}=\hat{\tau }$|Î=τ̂ is given by the instantaneous horizontal force (per surface) on the top wall in Fig. 1(a). For theory and simulation, Eq. (28) or Kirkwood's formula, Eq. (40), are more suitable for |$\hat{\tau }$|τ̂, but by no means unique.
45.
J. L.
Lebowitz
,
J. K.
Percus
, and
L.
Verlet
,
Phys. Rev.
153
,
250
(
1967
).
46.
M.
Abramowitz
and
I. A.
Stegun
,
Handbook of Mathematical Functions
(
Dover
,
New York
,
1964
).
47.
R.
Zwanzig
and
R.
Mountain
,
J. Chem. Phys.
43
,
4464
(
1965
).
48.
J.
Hansen
and
I.
McDonald
,
Theory of Simple Liquids
(
Academic
,
New York
,
1986
).
49.
W.
Kob
and
H. C.
Andersen
,
Phys. Rev. E
52
,
4134
(
1995
).
50.
For the quench of the configurations sufficiently small values for δγmax for a shear strain altering MC move and for δVmax for a volume change have been chosen such that the acceptance rate of both MC steps remain reasonable at the lowest temperatures (T < 0.1).
51.
Similar values for Tg have also been obtained for both models following the standard diagnostics described in the literature12,49 of various dynamic properties such as the scaling of the mean-square displacements, the self-diffusion coefficient or the Fourier transformed density autocorrelation function in the low-wavevector limit. From the analysis of these dynamical properties it is seen that, compared to the KA model, the pLJ model is a more gradual glass-former qualitatively similar to the purely repulsive soft-sphere model studied in Ref. 12.
52.
As for the shear stress fluctuations at constant τ in Sec. II C, it is possible to demonstrate by integration by parts, Eq. (48), that Eq. (A7) holds with ηA being given by Eqs. (A15) and (A23). Using the Legendre transform Eq. (A6) one thus immediately obtains Rowlinson's pressure fluctuation formula, Eq. (A5).
You do not currently have access to this content.