Position and orientation of water protons need to be specified when the molecular simulation studies are performed for clathrate hydrates. Positions of oxygen atoms in water are experimentally determined by X-ray diffraction analysis of clathrate hydrate structures, but positions of water hydrogen atoms in the lattice are disordered. This study reports a determination of the water proton coordinates in unit cell of structure I (sI), II (sII), and H (sH) clathrate hydrates that satisfy the ice rules, have the lowest potential energy configuration for the protons, and give a net zero dipole moment. Possible proton coordinates in the unit cell were chosen by analyzing the symmetry of protons on the hexagonal or pentagonal faces in the hydrate cages and generating all possible proton distributions which satisfy the ice rules. We found that in the sI and sII unit cells, proton distributions with small net dipole moments have fairly narrow potential energy spreads of about 1 kJ/mol. The total Coulomb potential on a test unit charge placed in the cage center for the minimum energy/minimum dipole unit cell configurations was calculated. In the sI small cages, the Coulomb potential energy spread in each class of cage is less than 0.1 kJ/mol, while the potential energy spread increases to values up to 6 kJ/mol in sH and 15 kJ/mol in the sII cages. The guest environments inside the cages can therefore be substantially different in the sII case. Cartesian coordinates for oxygen and hydrogen atoms in the sI, sII, and sH unit cells are reported for reference.

1.
E. D.
Sloan
 Jr.
,
Nature (London)
426
,
353
(
2003
).
2.
M. R.
Walsh
,
K. A.
Koh
,
E. D.
Sloan
,
A. K.
Sum
, and
D. T.
Wu
,
Science
326
,
1095
(
2009
).
3.
S.
Liang
and
P. G.
Kusalik
,
Chem. Phys. Lett.
494
,
123
(
2010
).
4.
S.
Liang
and
P. G.
Kusalik
,
J. Phys. Chem. B
114
,
9563
(
2010
).
5.
Y.
Okano
and
K.
Yasuoka
,
J. Chem. Phys.
124
,
024510
(
2006
).
6.
S.
Alavi
,
J. A.
Ripmeester
, and
D. D.
Klug
,
J. Chem. Phys.
125
,
104501
(
2006
).
7.
T.
Miyoshi
,
R.
Ohmura
, and
K.
Yasuoka
,
J. Phys. Chem. C
111
,
3799
(
2007
).
8.
S.
Alavi
,
J. A.
Ripmeester
, and
D. D.
Klug
,
J. Chem. Phys.
126
,
124708
(
2007
).
9.
T.
Miyoshi
,
M.
Imai
,
R.
Ohmura
, and
K.
Yasuoka
,
J. Chem. Phys.
126
,
234506
(
2007
).
10.
M. M.
Conde
and
C.
Vega
,
J. Chem. Phys.
133
,
064507
(
2010
).
11.
S.
Alavi
,
R.
Susilo
, and
J. A.
Ripmeester
,
J. Chem. Phys.
130
,
174501
(
2009
).
12.
S.
Alavi
,
S.
Takeya
,
R.
Ohmura
,
T. K.
Woo
, and
J. A.
Ripmeester
,
J. Chem. Phys.
133
,
074505
(
2010
).
13.
W.
Kluig
,
P.
Kubisiak
, and
L.
Cwiklik
,
J. Phys. Chem. A
115
,
6149
(
2011
).
14.
S.
Alavi
,
R.
Ohmura
, and
J. A.
Ripmeester
,
J. Chem. Phys.
134
,
054702
(
2011
).
15.
F.
Hollander
and
G. A.
Jeffrey
,
J. Chem. Phys.
66
,
4699
(
1977
).
16.
R. K.
McMullan
and
Å.
Kvick
,
Acta Crystallogr. B
46
,
390
(
1990
).
17.
M. A.
Desando
,
Y. P.
Handa
,
R. E.
Hawkins
,
C. I.
Ratcliffe
, and
J. A.
Ripmeester
,
J. Inclusion Phenom.
8
,
3
16
(
1990
).
18.
D. W.
Davidson
,
C. I.
Ratcliffe
, and
J. A.
Ripmeester
,
J. Inclusion Phenom.
2
,
239
247
(
1984
).
19.
C. I.
Ratcliffe
and
J. A.
Ripmeester
,
J. Phys. Chem.
90
,
1259
1263
(
1986
).
20.
M. J.
Collins
,
D. W.
Davidson
,
C. I.
Ratcliffe
, and
J. A.
Ripmeester
, in
Dynamics of Molecular Crystals
, edited by
J.
Lascombe
(
Elsevier
,
Amsterdam
,
1987
), p.
497
.
21.
S. K.
Garg
,
D. W.
Davidson
, and
J. A.
Ripmeester
,
J. Magn. Reson.
15
,
295
309
(
1974
);
T. M.
Kirschgen
,
M. D.
Zeidler
,
B.
Geil
, and
F.
Fujara
,
Phys. Chem. Chem. Phys.
5
,
5247
(
2003
);
Y.
Ba
,
J. A.
Ripmeester
, and
C. I.
Ratcliffe
,
Can. J. Chem.
89
,
1055
(
2011
).
22.
H.
Mohammadi-Manesh
,
S.
Alavi
,
T. K.
Woo
, and
B.
Najafi
,
Phys. Chem. Chem. Phys.
13
,
2367
(
2011
).
23.
J. S.
Tse
,
W. R.
McKinnon
, and
M.
Marchi
,
J. Phys. Chem.
91
,
4188
(
1987
).
24.
C.
Gutt
,
J.
Baumert
,
W.
Press
,
J. S.
Tse
, and
S.
Janssen
,
J. Chem. Phys.
116
,
3795
(
2002
).
25.
V.
Buch
,
P.
Sandler
, and
J.
Sadlej
,
J. Phys. Chem. B
102
,
8641
(
1998
).
26.
E. P.
van Klaveren
,
J. P.
Michels
,
J. A.
Schouten
,
D. D.
Klug
, and
J. S.
Tse
,
J. Chem. Phys.
117
,
6637
(
2002
).
27.
L. G.
MacDowell
and
C.
Vega
,
J. Phys. Chem. B
114
,
6089
(
2010
).
28.
R. K.
McMullan
and
G. A.
Jeffrey
,
J. Chem. Phys.
42
,
2725
(
1965
).
29.
K. A.
Udachin
,
C. I.
Ratcliffe
,
G. D.
Enright
, and
J. A.
Ripmeester
,
Supramol. Chem.
8
,
173
(
1997
).
30.
M. V.
Kirov
,
Crystallogr. Rep.
55
,
353
(
2010
).
31.
J. D.
Bernal
and
R. H.
Fowler
,
J. Chem. Phys.
1
,
515
(
1933
).
32.
W. L.
Jorgensen
and
J. D.
Madura
,
Mol. Phys.
56
,
1381
(
1985
).
34.
See supplementary material at http://dx.doi.org/10.1063/1.4795499 for the coordinates of hydrates in xyz coordinate file format. The sI.xyz.txt file contains the coordinates of the water molecules and the location of the center of the cages in a unit cell of the sI hydrate. The sII.xyz.txt file contains the coordinates of the water molecules and the location of the center of the cages in a unit cell of the sII hydrate. The sH.xyz.txt file contains the coordinates of the water molecules and the location of the center of the cages in the combined two hexagonal unit cells of sH hydrate to construct an orthorhombic cell.
35.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids
(
Oxford University Press
,
1989
).

Supplementary Material

You do not currently have access to this content.