Pure acetylene and mixed Ar-acetylene clusters are formed in supersonic expansions of acetylene/argon mixtures and analysed using reflectron time-of-flight mass spectrometer with variable electron energy ionization source. Acetylene clusters composed of more than a hundred acetylene molecules are generated at the acetylene concentration of ≈8%, while mixed species are produced at low concentrations (≈0.7%). The electron energy dependence of the mass spectra revealed the ionization process mechanisms in clusters. The ionization above the threshold for acetylene molecule of 11.5 eV results in the main ionic fragment progression |$({\rm C}_2{\rm H}_2)_n^+$|(C2H2)n+. At the electron energies ⩾21.5 eV above the CH+CH+ dissociative ionization limit of acetylene the fragment ions nominally labelled as (C2H2)nCH+, n ⩾ 2, are observed. For n ⩽ 7 these fragments correspond to covalently bound ionic structures as suggested by the observed strong dehydrogenation [(C2H2)nk × H]+ and [(C2H2)nCH − k × H]+. The dehydrogenation is significantly reduced in the mixed clusters where evaporation of Ar instead of hydrogen can stabilize the nascent molecular ion. The

${\rm C}_{3} {\rm H}_3^+$
C3H3+ ion was previously assigned to originate from the benzene molecular ion; however, the low appearance energy of ≈13.7 eV indicates that a less rigid covalently bound structure of
${\rm C}_{6} {\rm H}_6^+$
C6H6+
ion must also be formed upon the acetylene cluster electron ionization. The appearance energy of Arn(C2H2)+ fragments above ≈15.1 eV indicates that the argon ionization is the first step in the fragment ion production, and the appearance energy of
${\rm Ar}_{n \ge 2}({\rm C}_{2} {\rm H}_{2})_{m\ge 2}^+$
Ar n2(C2H2)m2+
at ≈13.7 eV is discussed in terms of an exciton transfer mechanism.

1.
R.
Courtin
,
Space Sci. Rev.
116
,
185
(
2005
).
2.
Y.
Ono
and
C. Y.
Ng
,
J. Am. Chem. Soc.
104
,
4752
(
1982
).
3.
H.
Shinohara
,
H.
Sato
, and
N.
Washida
,
J. Phys. Chem.
94
,
6718
(
1990
).
4.
J. A.
Booze
and
T.
Baer
,
J. Chem. Phys.
98
,
186
(
1993
).
5.
M.
Fárník
,
V.
Poterya
,
O.
Votava
,
M.
Ončák
,
P.
Slavíček
,
I.
Dauster
, and
U.
Buck
,
J. Phys. Chem. A
113
,
7322
(
2009
).
6.
M. T.
Coolbaugh
,
S. G.
Whitney
,
G.
Vaidyanathan
, and
J. F.
Garvey
,
J. Phys. Chem.
96
,
9139
(
1992
).
7.
R. A.
Relph
,
J. C.
Bopp
,
J. R.
Roscioli
, and
M. A.
Johnson
,
J. Chem. Phys.
131
,
114305
(
2009
).
8.
W. H.
Robertson
,
J. A.
Kelley
, and
M. A.
Johnson
,
Rev. Sci. Instrum.
71
,
4431
(
2000
).
9.
M.
Fárník
,
V.
Poterya
,
J.
Kočišek
,
J.
Fedor
, and
P.
Slavíček
,
Mol. Phys.
110
,
2817
(
2012
).
10.
A. M.
Mebel
,
V. V.
Kislov
, and
R. I.
Kaiser
,
J. Am. Chem. Soc.
130
,
13618
(
2008
).
11.
D. S. N.
Parker
,
F.
Zhang
,
Y. S.
Kim
,
R. I.
Kaiser
,
A.
Landera
,
V. V.
Kislov
,
A. M.
Mebel
, and
A. G. G. M.
Tielens
,
Proc. Natl. Acad. Sci. U.S.A.
109
,
53
(
2012
).
12.
M. S.
El-Shall
,
Acc. Chem. Res.
41
,
783
(
2008
).
13.
P. O.
Momoh
,
S. A.
Abrash
,
R.
Mabrouki
, and
M. S.
El-Shall
,
J. Am. Chem. Soc.
128
,
12408
(
2006
).
14.
P. O.
Momoh
and
M. S.
El-Shall
,
Chem. Phys. Lett.
436
,
25
(
2007
).
15.
P. O.
Momoh
,
A. M.
Hamid
,
S. A.
Abrash
, and
M. S.
El-Shall
,
J. Chem. Phys.
134
,
204315
(
2011
).
16.
P. O.
Momoh
,
A. M.
Hamid
,
A.-R.
Soliman
,
S. A.
Abrash
, and
M. S.
El-Shall
,
J. Phys. Chem. Lett.
2
,
2412
(
2011
).
17.
A.-R.
Soliman
,
A. M.
Hamid
,
S. A.
Abrash
, and
M. S.
El-Shall
,
Chem. Phys. Lett.
523
,
25
(
2012
).
18.
A.
Golan
and
M.
Ahmed
,
J. Phys. Chem. Lett.
3
,
458
(
2012
).
19.
M.
Fárník
,
Molecular Dynamics in Free Clusters and Nanoparticles Studied in Molecular Beams
(
ICT Prague Press
,
Prague
,
2011
).
20.
S.
Kaesdorf
, Gerate für Forschung und Industrie, Munich, Germany, see http://www.kaesdorf.de/.
21.
G. H.
Wannier
,
Phys. Rev.
90
,
817
(
1953
).
22.
M.
Stano
,
Š.
Matejčík
,
J. D.
Skalný
, and
T. D.
Märk
,
J. Phys. B
36
,
261
(
2003
).
23.
K.
Wnorowski
,
M.
Stano
,
C.
Matias
,
S.
Denifl
,
W.
Barszczewska
, and
Š.
Matejčík
,
Rapid Commun. Mass Spectrom.
26
,
2093
(
2012
).
24.
M. E.
Jacox
, in
NIST Chemistry WebBook, NIST Standard Reference Database Number 69
(
National Institute of Standards and Technology
,
Gaithersburg, MD
,
2012
), see http://webbook.nist.gov.
25.
S. G.
Whitney
,
M. T.
Coolbaugh
,
G.
Vaidyanathan
, and
J. F.
Garvey
,
J. Phys. Chem.
95
,
9625
(
1991
).
26.
See supplementary material at http://dx.doi.org/10.1063/1.4796262 for the values of appearance energies for individual ion fragments.
27.
C.
Leforestier
,
A.
Tekin
,
G.
Jansen
, and
M.
Herman
,
J. Chem. Phys.
135
,
234306
(
2011
).
28.
K.
Shuler
and
C. E.
Dykstra
,
J. Phys. Chem. A
104
,
11522
(
2000
).
29.
A. V.
Malakhovskii
and
M.
Ben-Zion
,
Chem. Phys.
264
,
135
(
2001
).
30.
Y.
Ono
and
C. Y.
Ng
,
J. Chem. Phys.
77
,
2947
(
1982
).
31.
C. Y.
Ng
,
Adv. Chem. Phys.
52
,
265
(
1983
).
32.
M. J.
Rusyniak
,
Y. M.
Ibrahim
,
D. L.
Wright
,
S. N.
Khanna
, and
M. S.
El-Shall
,
J. Am. Chem. Soc.
125
,
12001
(
2003
).
33.
M. J.
Rusyniak
,
Y.
Ibrahim
,
E.
Alsharaeh
,
M.
Meot-Ner
, and
M. S.
El-Shall
,
J. Phys. Chem. A
107
,
7656
(
2003
).
34.
M.
Vasile
and
G.
Smolinsky
,
Int. J. Mass. Spectrom. Ion Phys.
24
,
11
(
1977
).
35.
R. M.
Forck
,
J. M.
Dieterich
,
C. C.
Pradzynski
,
A. L.
Huchting
,
R. A.
Mata
, and
T.
Zeuch
,
Phys. Chem. Chem. Phys.
14
,
9054
(
2012
).
36.
R. M.
Forck
,
C. C.
Pradzynski
,
S.
Wolff
,
M.
Ončák
,
P.
Slavíček
, and
T.
Zeuch
,
Phys. Chem. Chem. Phys.
14
,
3004
(
2012
).
37.
F. C.
Frank
,
Proc. R. Soc. London, Ser. A
215
,
43
(
1952
).
38.
H.
Haberland
,
Clusters of Atoms and Molecules
(
Springer
,
Berlin
,
1994
).
39.
S.
Liu
,
Z.
Bačić
,
J. W.
Moskowitz
, and
K. E.
Schmidt
,
J. Chem. Phys.
100
,
7166
(
1994
).
40.
P.
Ždánská
,
B.
Schmidt
, and
P.
Jungwirth
,
J. Chem. Phys.
110
,
6246
(
1999
).
41.
O.
Dopfer
,
R. V.
Olkhov
,
M.
Mladenović
, and
P.
Botschwina
,
J. Chem. Phys.
121
,
1744
(
2004
).
42.
M.
Yang
,
M. H.
Alexander
,
H.-J.
Werner
, and
R. J.
Bemish
,
J. Chem. Phys.
105
,
10462
(
1996
).
43.
O.
Echt
,
T.
Fiegele
,
M.
Rümmele
,
M.
Probst
,
S.
Matt-Leubner
,
J.
Urban
,
P.
Mach
,
J.
Leszczynski
,
P.
Scheier
, and
T. D.
Märk
,
J. Chem. Phys.
123
,
084313
(
2005
).
44.
P.
Svrčková
,
A.
Vítek
,
F.
Karlický
,
I.
Paidarová
, and
R.
Kalus
,
J. Chem. Phys.
134
,
224310
(
2011
).
45.
P.
Plessis
and
P.
Marmet
,
Int. J. Mass. Spectrom. Ion Phys.
70
,
23
(
1986
).
46.
G.
Vaidyanathan
,
M. T.
Coolbaugh
,
W. R.
Peifer
, and
J. F.
Garvey
,
J. Chem. Phys.
94
,
1850
(
1991
).
47.
Ö.
Şahin
,
I.
Tapan
,
E. N.
Özmutlu
, and
R.
Veenhof
,
J. Instrum.
5
,
P05002
(
2010
).
48.
S.
Denifl
,
M.
Stano
,
A.
Stamatovic
,
P.
Scheier
, and
T. D.
Märk
,
J. Chem. Phys.
124
,
054320
(
2006
).
49.
B.
Kamke
,
W.
Kamke
,
Z.
Wang
,
E.
Rühl
, and
B.
Brutschy
,
J. Chem. Phys.
86
,
2525
(
1987
).
50.
L. S.
Cederbaum
,
J.
Zobeley
, and
F. G.
Tarantelli
,
Phys. Rev. Lett.
79
,
4778
(
1997
).
51.
M.
Hayashi
, A set of electron-Ar cross sections with 25 excited states, see online at http://jila.colorado.edu/~avp/collision_data/electronneutral/hayashi.txt.
52.
K.
Mitsuke
and
H.
Hattori
,
J. Chem. Phys.
102
,
5288
(
1995
).
53.
M. S. B.
Munson
,
J. Phys. Chem.
69
,
572
(
1965
).
54.
D. L.
Miller
and
M. L.
Gross
,
J. Am. Chem. Soc.
105
,
3783
(
1983
).
55.
W. J.
van der Hart
,
Int. J. Mass Spectrom. Ion Process.
130
,
173
(
1994
).
56.
C.
Lifshitz
and
B. G.
Reuben
,
J. Chem. Phys.
50
,
951
(
1969
).
57.
D. L.
Lichtenberger
and
A. S.
Copenhaver
,
Ionization Energy–Bond Energy Relationships in Organometallic Chemistry
(
American Chemical Society
,
Washington, DC
,
1990
), Chap. 7, pp.
84
99
.

Supplementary Material

You do not currently have access to this content.