We apply the frozen density embedding method, using a full relaxation of embedded densities through a freeze-and-thaw procedure, to study the electronic structure of several benchmark ground-state charge-transfer complexes, in order to assess the merits and limitations of the approach for this class of systems. The calculations are performed using both semilocal and hybrid exchange-correlation (XC) functionals. The results show that embedding calculations using semilocal XC functionals yield rather large deviations with respect to the corresponding supermolecular calculations. Due to a large error cancellation effect, however, they can often provide a relatively good description of the electronic structure of charge-transfer complexes, in contrast to supermolecular calculations performed at the same level of theory. On the contrary, when hybrid XC functionals are employed, both embedding and supermolecular calculations agree very well with each other and with the reference benchmark results. In conclusion, for the study of ground-state charge-transfer complexes via embedding calculations hybrid XC functionals are the method of choice due to their higher reliability and superior performance.

2.
W.
Yang
and
T.-S.
Lee
,
J. Chem. Phys.
103
,
5674
(
1995
).
3.
T.
Amaka
,
M.
Kobayashi
, and
H.
Nakai
,
J. Comput. Chem.
28
,
2003
(
2007
).
4.
J.
He
,
C. D.
Paola
, and
L.
Kantorovich
,
J. Chem. Phys.
130
,
144104
(
2009
).
5.
L.-W.
Wang
,
Z.
Zhao
, and
J.
Meza
,
Phys. Rev. B
77
,
165113
(
2008
).
6.
Z.
Zhao
,
J.
Meza
, and
L.-W.
Wang
,
J. Phys.: Condens. Matter
20
,
294203
(
2008
).
7.
S.
Sugiki
,
N.
Kurita
,
Y.
Sengoku
, and
H.
Sekino
,
Chem. Phys. Lett.
382
,
611
(
2003
).
8.
D.
Fedorov
and
K.
Kitaura
,
Chem. Phys. Lett.
389
,
129
(
2004
).
9.
G.
Senatore
and
K. R.
Subbaswamy
,
Phys. Rev. B
34
,
5754
(
1986
).
10.
11.
P.
Cortona
and
A.
Monteleone
,
Int. J. Quantum Chem.
52
,
987
(
1994
).
12.
M. H.
Cohen
and
A.
Wasserman
,
J. Chem. Phys. A
111
,
2229
(
2007
).
13.
M. H.
Cohen
,
A.
Wasserman
, and
K.
Burke
,
J. Chem. Phys. A
111
,
12447
(
2007
).
14.
P.
Huang
and
E. A.
Carter
,
J. Chem. Phys.
125
,
084102
(
2006
).
15.
C.
Huang
and
E. A.
Carter
,
J. Chem. Phys.
135
,
194104
(
2011
).
16.
M. H.
Cohen
,
A.
Wasserman
,
R.
Car
, and
K.
Burke
,
J. Chem. Phys. A
113
,
2183
(
2009
).
17.
P.
Elliott
,
M. H.
Cohen
,
A.
Wasserman
, and
K.
Burke
,
J. Chem. Theory Comput.
5
,
827
(
2009
).
18.
J.
Nafziger
,
Q.
Wu
, and
A.
Wasserman
,
J. Chem. Phys.
135
,
234101
(
2011
).
19.
M. S.
Gordon
,
D. G.
Fedorov
,
S. R.
Pruitt
, and
L. V.
Slipchenko
,
Chem. Rev.
112
,
632
(
2012
).
20.
A. S. P.
Gomes
and
C. R.
Jacob
,
Annu. Rep. Prog. Chem., Sect. C: Phys. Chem.
108
,
222
(
2012
).
21.
A.
Solovyeva
,
M.
Pavanello
, and
J.
Neugebauer
,
J. Chem. Phys.
136
,
194104
(
2012
).
22.
P.
Hohenberg
and
W.
Kohn
,
Phys. Rev.
136
,
B864
(
1964
).
23.
W.
Kohn
and
L. J.
Sham
,
Phys. Rev.
140
,
A1133
(
1965
).
24.
T. A.
Wesolowski
and
A.
Warshel
,
J. Phys. Chem.
97
,
8050
(
1993
).
25.
T. A.
Wesolowski
in
Chemistry: Reviews of Current Trends
, edited by
J.
Leszczynski
(
World Scientific
,
Singapore
,
2006
), Vol.
10
, p.
1
.
26.
M.
Dulak
and
T. A.
Wesolowski
,
J. Mol. Model.
13
,
631
(
2007
).
27.
R.
Kevorkyants
,
M.
Dulak
, and
T. A.
Wesolowski
,
J. Chem. Phys.
124
,
024104
(
2006
).
28.
T. A.
Wesolowski
,
J. Chem. Phys.
106
,
8516
(
1997
).
29.
T. A.
Wesolowski
,
N.
Vulliermet
, and
J.
Weber
,
J. Mol. Struct.: THEOCHEM
458
,
151
(
1998
).
30.
F.
Tran
,
J.
Weber
,
T. A.
Wesolowski
,
F.
Cheikh
,
Y.
Ellinger
, and
F.
Pauzat
,
J. Phys. Chem. B
106
,
8689
(
2002
).
31.
J.
Neugebauer
,
M. J.
Louwerse
,
E. J.
Baerends
, and
T. A.
Wesolowski
,
J. Chem. Phys.
122
,
094115
(
2005
).
32.
C. R.
Jacob
,
J.
Neugebauer
, and
L.
Visscher
,
J. Comput. Chem.
29
,
1011
(
2008
).
33.
J.
Neugebauer
,
C. R.
Jacob
,
T. A.
Wesolowski
, and
E. J.
Baerends
,
J. Phys. Chem. A
109
,
7805
(
2005
).
34.
C. R.
Jacob
,
J.
Neugebauer
,
L.
Jensen
, and
L.
Visscher
,
Phys. Chem. Chem. Phys.
8
,
2349
(
2006
).
35.
F. R.
Manby
,
M.
Stella
,
J. D.
Goodpaster
, and
T. F.
Miller
 III
,
J. Chem. Theory Comput.
8
,
2564
(
2012
).
36.
M.
Pavanello
and
J.
Neugebauer
,
J. Chem. Phys.
135
,
234103
(
2011
).
37.
T. A.
Wesolowski
and
A.
Warshel
,
Chem. Phys. Lett.
248
,
71
(
1996
).
38.
A.
Lembarki
and
H.
Chermette
,
Phys. Rev. A
50
,
5328
(
1994
).
39.
L. A.
Constantin
,
E.
Fabiano
,
S.
Laricchia
, and
F.
Della Sala
,
Phys. Rev. Lett.
106
,
186406
(
2011
).
40.
S.
Laricchia
,
E.
Fabiano
,
L. A.
Constantin
, and
F.
Della Sala
,
J. Chem. Theory and Comput.
7
,
2439
(
2011
).
41.
S. M.
Beyhan
,
A. W.
Götz
,
C. R.
Jacob
, and
L.
Visscher
,
J. Chem. Phys.
132
,
044114
(
2010
).
42.
Y.
Zhao
and
D. G.
Truhlar
,
J. Chem. Theory Comput.
1
,
415
(
2005
).
43.
E.
Fabiano
,
L. A.
Constantin
, and
F. Della
Sala
,
J. Chem. Theory Comput.
7
,
3548
(
2011
).
44.
S.
Laricchia
,
E.
Fabiano
, and
F.
Della Sala
,
J. Chem. Phys.
133
,
164111
(
2010
).
45.
S.
Laricchia
,
E.
Fabiano
, and
F. Della
Sala
,
J. Chem. Phys.
137
,
014102
(
2012
).
46.
S.
Laricchia
,
E.
Fabiano
, and
F.
Della Sala
,
Chem. Phys. Lett.
518
,
114
(
2011
).
47.
A. J.
Cohen
,
P.
Mori-Sánchez
, and
W.
Yang
,
Science
321
,
792
(
2008
).
48.
F.
Della Sala
,
Theor. Chem. Acc.
117
,
981
(
2007
).
49.
S. N.
Steinmann
,
C.
Piemontesi
,
A.
Delachat
, and
C.
Corminboeuf
,
J. Chem. Theory Comput.
8
,
1629
(
2012
).
50.
E.
Ruiz
,
D. R.
Salahub
, and
A.
Vela
,
J. Am. Chem. Soc.
117
,
1141
(
1995
).
51.
E.
Ruiz
,
D. R.
Salahub
, and
A.
Vela
,
J. Phys. Chem.
100
,
12265
(
1996
).
52.
A.
Garcia
,
E. M.
Cruz
,
C.
Sarasola
, and
J. M.
Ugalde
,
J. Phys. Chem. A
101
,
3021
(
1997
).
53.
A.
Garcia
,
J. M.
Elorza
, and
J. M.
Ugalde
,
J. Mol. Struct.: THEOCHEM
501–502
,
207
(
2000
).
54.
A.
Karpfen
,
Theor. Chem. Acc.
110
,
1
(
2003
).
55.
M.-S.
Liao
,
Y.
Lu
,
V. D.
Parker
, and
S.
Scheiner
,
J. Phys. Chem. A
107
,
8939
(
2003
).
56.
M.-S.
Liao
,
Y.
Lu
, and
S.
Scheiner
,
J. Comput. Chem.
24
,
623
(
2003
).
57.
E. L.
Smith
,
D.
Sadowsky
,
J. A.
Phillips
,
C. J.
Cramer
, and
D. J.
Giesen
,
J. Phys. Chem. A
114
,
2628
(
2010
).
58.
A. Y.
Timoshkin
and
H. F.
Schaefer
 III
,
J. Phys. Chem. C
112
,
13816
(
2008
).
59.
J. A.
Phillips
and
C. J.
Cramer
,
J. Phys. Chem. B
111
,
1408
(
2007
).
60.
B.
Szefczyk
,
W. A.
Sokalski
, and
J.
Leszczynski
,
J. Chem. Phys.
117
,
6952
(
2002
).
61.
X.-Y.
Li
and
C.-X.
Hu
,
J. Comput. Chem.
23
,
874
(
2002
).
62.
T.
Stein
,
L.
Kronik
, and
R.
Baer
,
J. Chem. Phys.
131
,
244119
(
2009
).
63.
T.
Manna
and
S.
Bhattacharya
,
J. Mol. Model.
15
,
885
(
2009
).
64.
S.
Bhattacharya
,
Chem. Phys. Lett.
446
,
199
(
2007
).
65.
C.
López
,
R. M.
Claramunt
,
E.
Pinilla
,
M. R.
Torres
,
I.
Alkorta
, and
J.
Elguero
,
Magn. Reson. Chem.
47
,
917
(
2009
).
66.
E.
Fabiano
,
M.
Piacenza
,
S.
D’Agostino
, and
F.
Della Sala
,
J. Chem. Phys.
131
,
234101
(
2009
).
67.
F.
Della Sala
,
E.
Fabiano
,
S.
Laricchia
,
S.
D’Agostino
, and
M.
Piacenza
,
Int. J. Quantum Chem.
110
,
2162
(
2010
).
68.
A. W.
Götz
,
S. M.
Beyhan
, and
L.
Visscher
,
J. Chem. Theory Comput.
5
,
3161
(
2009
).
69.
M.
Dulak
and
T. A.
Wesolowski
,
J. Chem. Phys.
124
,
164101
(
2006
).
70.
J.-M. G.
Lastra
,
J. W.
Kaminski
, and
T. A.
Wesolowski
,
J. Chem. Phys.
129
,
074107
(
2008
).
71.
TURBOMOLE V6.2 2009, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989–2007, turbomole GmbH, since 2007; available from http://www.turbomole.com.
72.
F.
Weigend
,
F.
Furche
, and
R.
Ahlrichs
,
J. Chem. Phys.
119
,
12753
(
2003
).
73.
F.
Weigend
and
R.
Ahlrichs
,
Phys. Chem. Chem. Phys.
7
,
3297
(
2005
).
74.
Y.
Zhao
and
D. G.
Truhlar
,
J. Phys. Chem.
109
,
5656
(
2005
).
75.
C.
Møller
and
M. S.
Plesset
,
Phys. Rev.
46
,
618
(
1934
).
76.
T. H.
Dunning
,
J. Chem. Phys.
90
,
1007
(
1989
).
77.
R. A.
Kendall
,
T. H.
Dunning
, and
R. J.
Harrison
,
J. Chem. Phys.
96
,
6796
(
1992
).
78.
J. E. D.
Bene
,
J. Phys. Chem.
97
,
107
(
1993
).
79.
M.
Pitoňák
,
K. E.
Riley
,
P.
Neogrády
, and
P.
Hobza
,
ChemPhysChem
9
,
1636
(
2008
).
80.
K.
Raghavachari
,
G. W.
Trucks
,
J. A.
Pople
, and
M.
Head-Gordon
,
Chem. Phys. Lett.
157
,
479
(
1989
).
81.
A.
Halkier
,
T.
Helgaker
,
P.
Jørgensen
,
W.
Klopper
,
H.
Koch
,
J.
Olsen
, and
A. K.
Wilson
,
Chem. Phys. Lett.
286
,
243
(
1998
).
82.
A. D.
Becke
,
Phys. Rev. A
38
,
3098
(
1988
).
83.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
84.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
85.
J. P.
Perdew
,
M.
Ernzerhof
, and
K.
Burke
,
J. Chem. Phys.
105
,
9982
(
1996
).
86.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
,
J. Chem. Phys.
132
,
154104
(
2010
).
87.
J. I.
Rodriguez
,
A. M.
Köster
,
P. W.
Ayers
,
A.
Santos-Valle
,
A.
Vela
, and
G. J.
Merino
,
J. Comput. Chem.
30
,
1082
(
2009
).
88.
S. F.
Boys
and
F.
Bernardi
,
Mol. Phys.
19
,
553
(
1970
).
89.
J.
Prissette
,
G.
Seger
, and
E.
Kochanski
,
J. Am. Chem. Soc.
100
,
6941
(
1978
).
90.
T. A.
Wesolowski
,
P.-Y.
Morgantini
, and
J.
Weber
,
J. Chem. Phys.
116
,
6411
(
2002
).
91.
C. R.
Jacob
and
L.
Visscher
,
J. Chem. Phys.
128
,
155102
(
2008
).
92.
K.
Kiewisch
,
G.
Eickerling
,
M.
Reiher
, and
J.
Neugebauer
,
J. Chem. Phys.
128
,
044114
(
2008
).
93.
N.
Govind
,
P.
Sushko
,
W.
Hess
,
M.
Valiev
, and
K.
Kowalski
,
Chem. Phys. Lett.
470
,
353
(
2009
).
94.
S.
Fux
,
C. R.
Jacob
,
J.
Neugebauer
,
L.
Visscher
, and
M.
Reiher
,
J. Chem. Phys.
132
,
164101
(
2010
).
95.
Y.
Zhao
,
N. E.
Schultz
, and
D. G.
Truhlar
,
J. Chem. Theory Comput.
2
,
364
(
2006
).
96.
M. E.
Casida
and
T. A.
Wesolowski
,
Int. J. Quantum Chem.
96
,
577
(
2004
).
97.
J.
Neugebauer
,
J. Chem. Phys.
126
,
134116
(
2007
).
98.
F.
Della Sala
and
A.
Görling
,
J. Chem. Phys.
115
,
5718
(
2001
).
99.
E.
Fabiano
and
F.
Della Sala
,
J. Chem. Phys.
126
,
214102
(
2007
).
You do not currently have access to this content.