The interaction force between functionalized single-walled carbon nanotubes (SWNTs) plays an important role in the fabrication of self-assembled and highly ordered SWNT arrays for a wide range of potential applications. Here, we measured interaction force between SWNTs encapsulated with polymerized surfactant monolayer (p-SWNTs). The balance between the repulsion between p-SWNTs and the osmotic pressure exerted by poly(ethylene glycol) in aqueous solution results in two-dimensional hexagonal arrays of p-SWNTs with very small surface to surface distances (<1 nm). The interaction force measured by the osmotic pressure technique shows characteristic decay length of hydration force in its origin.

1.
R. A.
Vaia
and
J. F.
Maguire
,
Chem. Mater.
19
(
11
),
2736
(
2007
).
2.
J. M.
Perez
,
L.
Josephson
,
T.
O’Loughlin
,
D.
Högemann
, and
R.
Weissleder
,
Nat. Biotechnol.
20
,
816
(
2002
).
3.
J.-M.
Nam
,
C. S.
Thaxton
, and
C. A.
Mirkin
,
Science
301
,
1884
(
2003
).
4.
F. J.
Nedelec
,
T.
Surrey
,
A. C.
Maggs
, and
S.
Leibler
,
Nature (London)
389
(
6648
),
305
(
1997
).
5.
R. A.
Muscat
,
J.
Bath
, and
A. J.
Turberfield
,
Nano Lett.
11
,
982
(
2011
).
6.
E. V.
Shevchenko
,
D. V.
Talapin
,
N. A.
Kotov
,
S.
O’Brien
, and
C. B.
Murray
,
Nature (London)
439
,
55
(
2006
).
7.
P.
Cigler
,
A. K. R.
Lytton-Jean
,
D. G.
Anderson
,
M. G.
Finn
, and
S. Y.
Park
,
Nature Mater.
9
,
918
(
2010
).
8.
Y.
Min
,
M.
Akbulut
,
K.
Kristiansen
,
Y.
Golan
, and
J.
Israelachvili
,
Nature Mater.
7
,
527
(
2008
).
9.
Q.
Cao
,
H.-s.
Kim
,
N.
Pimparkar
,
J. P.
Kulkami
,
C.
Wang
,
M.
Shim
,
K.
Roy
,
M. A.
Alam
, and
J. A.
Rogers
,
Nature (London)
454
,
495
(
2008
).
10.
M. C.
Lemieux
,
M.
Roberts
,
S.
Barman
,
Y. W.
Jin
,
J. M.
Kim
, and
Z.
Bao
,
Science
321
,
101
(
2008
).
11.
J.
Li
,
Y.
Lu
,
Q.
Ye
,
M.
Cinke
,
J.
Han
, and
M.
Meyyappan
,
Nano Lett.
3
,
929
(
2003
).
12.
K.
Besteman
,
J.-O.
Lee
,
F. G. M.
Wiertz
,
H. A.
Heering
, and
C.
Dekker
,
Nano Lett.
3
,
727
(
2003
).
13.
P. W.
Barone
,
S.
Baik
,
D. A.
Heller
, and
M. S.
Strano
,
Nature Mater.
4
(
1
),
86
(
2005
).
14.
D. N.
Futaba
,
K.
Hata
,
T.
Yamada
,
T.
Hiraoka
,
Y.
Hayamizu
,
Y.
Kakudate
,
O.
Tanaike
,
H.
Hatori
,
M.
Yumura
, and
S.
Iijima
,
Nature Mater.
5
(
12
),
987
(
2006
).
15.
H.
Zhang
,
G.
Cao
,
Z.
Wang
,
Y.
Yang
,
Z.
Shi
, and
Z.
Gu
,
Nano Lett.
8
(
9
),
2664
(
2008
).
16.
V. P.
Veedu
,
A.
Cao
,
X.
Li
,
K.
Ma
,
C.
Soldano
,
S.
Kar
,
P. M.
Ajayan
, and
M. N.
Ghasemi-Nejhad
,
Nature Mater.
5
,
457
(
2006
).
17.
J. N.
Coleman
,
U.
Khan
, and
Y. K.
Gun'ko
,
Adv. Mater.
18
(
6
),
689
(
2006
).
18.
T. J.
Simmons
,
D.
Hashim
,
R.
Vajtai
, and
P. M.
Ajayan
,
J. Am. Chem. Soc.
129
(
33
),
10088
(
2007
).
19.
P. V.
Kamat
,
K. G.
Thomas
,
S.
Barazzouk
,
G.
Girishkumar
,
K.
Vinodgopal
, and
D.
Meisel
,
J. Am. Chem. Soc.
126
,
10757
(
2004
).
20.
C.
Doe
,
H.-S.
Jang
,
T.-H.
Kim
,
S. R.
Kline
, and
S.-M.
Choi
,
J. Am. Chem. Soc.
131
,
16568
(
2009
).
21.
C.
Doe
,
H.-S.
Jang
,
S. R.
Kline
, and
S.-M.
Choi
,
Macromolecules
43
,
5411
(
2010
).
22.
Y.
Yan
,
M. B.
Chan-Park
, and
Q.
Zhang
,
Small
3
(
1
),
24
(
2007
).
23.
T.-H.
Kim
,
C.
Doe
,
S. R.
Kline
, and
S.-M.
Choi
,
Adv. Mater.
19
,
929
(
2007
).
24.
T.-H.
Kim
,
C.
Doe
,
S. R.
Kline
, and
S.-M.
Choi
,
Macromolecules
41
(
9
),
3261
(
2008
).
25.
D. C.
Rau
,
B.
Lee
and
V. A.
Parsegian
,
Proc. Natl. Acad. Sci. U.S.A.
81
,
2621
(
1984
).
26.
R. P.
Rand
,
N.
Fuller
,
V. A.
Parsegian
, and
D. C.
Rau
,
Biochemistry
27
,
7711
(
1988
).
27.
T.-H.
Kim
,
S.-M.
Choi
, and
S. R.
Kline
,
Langmuir
22
,
2844
(
2006
).
28.
C.
Doe
,
S.-M.
Choi
,
S. R.
Kline
,
H.-S.
Jang
, and
T.-H.
Kim
,
Adv. Funct. Mater.
18
,
2685
(
2008
).
29.
V. A.
Parsegian
,
R. P.
Rand
, and
D. C.
Rau
,
Proc. Natl. Acad. Sci. U.S.A.
97
(
8
),
3987
(
2000
).
30.
D.
Marenduzzo
,
K.
Finan
, and
P. R.
Cook
,
J. Cell Biol.
175
,
681
(
2006
).
31.
S.
Asakura
and
F.
Oosawa
,
J. Polym. Sci.
33
,
183
(
1958
).
33.
D. J.
Needleman
,
M. A.
Ojeda-Lopez
,
U.
Raviv
,
K.
Ewert
,
J. B.
Jones
,
H. P.
Miller
,
L.
Wilson
, and
C. R.
Safinya
,
Phys. Rev. Lett.
93
,
198104
(
2004
).
34.
D. J.
Needleman
,
M. A.
Ojeda-Lopez
,
U.
Raviv
,
K.
Ewert
,
H. P.
Miller
,
L.
Wilson
, and
C. R.
Safinya
,
Biophys. J.
89
,
3410
(
2005
).
35.
Y.
Liang
,
N.
Hilal
,
P.
Langston
, and
V.
Starov
,
Adv. Colloid Interface Sci.
134-135
,
151
(
2007
).
36.
L. A.
Girifalco
,
M.
Hodak
, and
R. S.
Lee
,
Phys. Rev. B
62
(
19
),
13104
(
2000
).
37.
D.
Leckband
and
J.
Israelachvili
,
Q. Rev. Biophys.
34
,
105
(
2001
).
38.
S.
Marcelja
and
N.
Radic
,
Chem. Phys. Lett.
42
,
129
(
1976
).
39.
V. A.
Parsegian
,
R. P.
Rand
,
N. L.
Fuller
, and
D. C.
Rau
,
Methods Enzymol.
127
,
400
(
1986
).
40.
R. P.
Rand
, see http://www.brocku.ca/researchers/peter_rand/osmotic/osfile.html for osmotic pressure data.
41.
D. C.
Rau
and
V. A.
Parsegian
,
Science
249
,
1278
(
1990
).
42.
P.
Mariani
and
L.
Saturni
,
Biophys. J.
70
,
2867
(
1996
).
43.
D. M.
Leneveu
,
R. P.
Rand
, and
V. A.
Parsegian
,
Nature (London)
259
,
601
(
1976
).
44.
D. C.
Rau
and
V. A.
Parsegian
,
Biophys. J.
61
,
246
(
1992
).
45.
R.
Podgornik
,
D. C.
Rau
, and
V. A.
Parsegian
,
Macromolecules
22
,
1780
(
1989
).
46.
V. A.
Davis
,
L. M.
Ericson
,
A. N. G.
Parra-Vasquez
,
H.
Fan
,
Y.
Wang
,
V.
Prieto
,
J. A.
Longoria
,
S.
Ramesh
,
R. K.
Saini
,
C.
Kittrell
,
W. E.
Billups
,
W. W.
Adams
,
R. H.
Hauge
,
R. E.
Smalley
, and
M.
Pasquali
,
Macromolecules
37
,
154
(
2004
).
47.
See supplementary material at http://dx.doi.org/10.1063/1.4793763 for the plot of interaction energy vs separation distance.
48.
F.
Li
,
G.-Z.
Li
,
H.-Q.
Wang
, and
Q.-J.
Xue
,
Colloids Surf., A
127
,
89
(
1997
).
49.
A. D.
Mackerell
 Jr.
,
J. Phys. Chem.
99
,
1846
(
1995
).
50.
C. D.
Bruce
,
S.
Senapati
,
M. L.
Berkowitz
,
L.
Perera
, and
M. D. E.
Forbes
,
J. Phys. Chem. B
106
,
10902
(
2002
).

Supplementary Material

You do not currently have access to this content.