In this (Paper I) and the companion paper (Paper II; R. May, R. Smith, and B. Kay, J. Chem. Phys.138, 104502 (2013)

), we investigate the mechanisms for the release of trapped gases from underneath amorphous solid water (ASW) films. In prior work, we reported the episodic release of trapped gases in concert with the crystallization of ASW, a phenomenon that we termed the “molecular volcano.” The observed abrupt desorption is due to the formation of cracks that span the film to form a connected pathway for release. In this paper, we utilize the “molecular volcano” desorption peak to characterize the formation of crystallization-induced cracks. We find that the crack length distribution is independent of the trapped gas (Ar, Kr, Xe, CH4, N2, O2, or CO). Selective placement of the inert gas layer is used to show that cracks form near the top of the film and propagate downward into the film. Isothermal experiments reveal that, after some induction time, cracks propagate linearly in time with an Arrhenius dependent velocity corresponding to an activation energy of 54 kJ/mol. This value is consistent with the crystallization growth rates reported by others and establishes a direct connection between crystallization growth rate and the crack propagation rate. A two-step model in which nucleation and crystallization occurs in an induction zone near the top of the film followed by the propagation of a crystallization/crack front into the film is in good agreement with the temperature programmed desorption results.

1.
R.
May
,
R.
Smith
, and
B.
Kay
,
J. Chem. Phys.
138
,
104502
(
2013
).
2.
L. J.
Rothschild
and
R. L.
Mancinelli
,
Nature (London)
409
,
1092
(
2001
).
3.
M. P.
Collings
,
M. A.
Anderson
,
R.
Chen
,
J. W.
Dever
,
S.
Viti
,
D. A.
Williams
, and
M. R. S.
McCoustra
,
Mon. Not. R. Astron. Soc.
354
,
1133
(
2004
).
4.
M. R.
Hogerheijde
,
E. A.
Bergin
,
C.
Brinch
,
L. I.
Cleeves
,
J. K. J.
Fogel
,
G. A.
Blake
,
C.
Dominik
,
D. C.
Lis
,
G.
Melnick
,
D.
Neufeld
,
O.
Panić
,
J. C.
Pearson
,
L.
Kristensen
,
U. A.
Yıldız
, and
E. F.
van Dishoeck
,
Science
334
,
338
(
2011
).
5.
M. N.
Mautner
,
V.
Abdelsayed
,
M. S.
El-Shall
,
J. D.
Thrower
,
S. D.
Green
,
M. P.
Collings
, and
M. R. S.
McCoustra
,
Faraday Discuss.
133
,
103
(
2006
).
6.
A. H.
Delsemme
,
J. Phys. Chem.
87
,
4214
(
1983
).
7.
A.
Bar-Nun
,
J.
Dror
,
E.
Kochavi
,
D.
Laufer
,
D.
Kovetz
, and
T.
Owen
,
Origins of Life Evol. Biosphere
16
,
220
(
1986
).
8.
A.
Bar-Nun
,
J.
Dror
,
E.
Kochavi
, and
D.
Laufer
,
Phys. Rev. B
35
,
2427
(
1987
).
9.
D.
Laufer
,
E.
Kochavi
, and
A.
Bar-Nun
,
Phys. Rev. B
36
,
9219
(
1987
).
10.
A.
Bar-Nun
,
I.
Kleinfeld
, and
E.
Kochavi
,
Phys. Rev. B
38
,
7749
(
1988
).
11.
R. L.
Hudson
and
B.
Donn
,
Icarus
94
,
326
(
1991
).
12.
P.
Jenniskens
and
D. F.
Blake
,
Science
265
,
753
(
1994
).
13.
P.
Jenniskens
and
D. F.
Blake
,
Astrophys. J.
473
,
1104
(
1996
).
14.
L. J.
Allamandola
,
M. P.
Bernstein
,
S. A.
Sandford
, and
R. L.
Walker
,
Space Sci. Rev.
90
,
219
(
1999
).
15.
D. J.
Burke
and
W. A.
Brown
,
Phys. Chem. Chem. Phys.
12
,
5947
(
2010
).
16.
R. S.
Smith
,
N. G.
Petrik
,
G. A.
Kimmel
, and
B. D.
Kay
,
Acc. Chem. Res.
45
,
33
(
2012
).
17.
P.
Jenniskens
,
S. F.
Banham
,
D. F.
Blake
, and
M. R. S.
McCoustra
,
J. Chem. Phys.
107
,
1232
(
1997
).
18.
R. S.
Smith
,
C.
Huang
,
E. K. L.
Wong
, and
B. D.
Kay
,
Phys. Rev. Lett.
79
,
909
(
1997
).
19.
P.
Ayotte
,
R. S.
Smith
,
K. P.
Stevenson
,
Z.
Dohnalek
,
G. A.
Kimmel
, and
B. D.
Kay
,
J. Geophys. Res., [Planets]
106
,
33387
, doi: (
2001
).
20.
R. A.
May
,
R. S.
Smith
, and
B. D.
Kay
,
Phys. Chem. Chem. Phys.
13
,
19848
(
2011
).
21.
R. A.
May
,
R. S.
Smith
, and
B. D.
Kay
,
J. Phys. Chem. Lett.
3
,
327
(
2012
).
22.
R. S.
Smith
,
T.
Zubkov
, and
B. D.
Kay
,
J. Chem. Phys.
124
,
114710
(
2006
).
23.
T.
Zubkov
,
R. S.
Smith
,
T. R.
Engstrom
, and
B. D.
Kay
,
J. Chem. Phys.
127
,
184707
(
2007
).
24.
G. A.
Kimmel
,
J.
Matthiesen
,
M.
Baer
,
C. J.
Mundy
,
N. G.
Petrik
,
R. S.
Smith
,
Z.
Dohnalek
, and
B. D.
Kay
,
J. Am. Chem. Soc.
131
,
12838
(
2009
).
25.
S. L.
Tait
,
Z.
Dohnalek
,
C. T.
Campbell
, and
B. D.
Kay
,
J. Chem. Phys.
125
,
234308
(
2006
).
26.
S. M.
McClure
,
E. T.
Barlow
,
M. C.
Akin
,
D. J.
Safarik
,
T. M.
Truskett
, and
C. B.
Mullins
,
J. Phys. Chem. B
110
,
17987
(
2006
).
27.
See supplementary material at http://dx.doi.org/10.1063/1.4793311 for several additional figures that are not necessary for an overall understanding of the scientific arguments presented here but may be of interest to some readers. Typically these figures make the same point as those in the main text but show results for other adsorbate molecules.
28.
P.
Lofgren
,
P.
Ahlstrom
,
D. V.
Chakarov
,
J.
Lausmaa
, and
B.
Kasemo
,
Surf. Sci.
367
,
L19
(
1996
).
29.
R. S.
Smith
,
C.
Huang
,
E. K. L.
Wong
, and
B. D.
Kay
,
Surf. Sci.
367
,
L13
(
1996
).
30.
W. B.
Hillig
and
D.
Turnbull
,
J. Chem. Phys.
24
,
914
(
1956
).
31.
H. R.
Pruppacher
,
J. Chem. Phys.
47
,
1807
(
1967
).
32.
E. H. G.
Backus
,
M. L.
Grecea
,
A. W.
Kleyn
, and
M.
Bonn
,
Phys. Rev. Lett.
92
,
236101
(
2004
).
33.
Z.
Dohnalek
,
G. A.
Kimmel
,
R. L.
Ciolli
,
K. P.
Stevenson
,
R. S.
Smith
, and
B. D.
Kay
,
J. Chem. Phys.
112
,
5932
(
2000
).
34.
D. J.
Safarik
and
C. B.
Mullins
,
J. Chem. Phys.
121
,
6003
(
2004
).
35.
Y.
Sun
,
L.
Zhu
,
K. L.
Kearns
,
M. D.
Ediger
, and
L.
Yu
,
Proc. Natl. Acad. Sci. U.S.A.
108
,
5990
(
2011
).
36.
A.
Sakai
,
T.
Tatsumi
, and
K.
Ishida
,
J. Vac. Sci. Technol. A
11
,
2950
(
1993
).
37.
R. S.
Smith
,
J.
Matthiesen
, and
B. D.
Kay
,
J. Chem. Phys.
133
,
174504
(
2010
).
38.
J.
Matthiesen
,
R. S.
Smith
, and
B. D.
Kay
,
J. Chem. Phys.
133
,
174505
(
2010
).
39.
R. S.
Smith
and
B. D.
Kay
,
Nature (London)
398
,
788
(
1999
).
40.
R. S.
Smith
,
J.
Matthiesen
,
J.
Knox
, and
B. D.
Kay
,
J. Phys. Chem. A
115
,
5908
(
2011
).

Supplementary Material

You do not currently have access to this content.