The generalized Replica Exchange Method (gREM) is extended into the isobaric-isothermal ensemble, and applied to simulate a vapor-liquid phase transition in Lennard-Jones fluids. Merging an optimally designed generalized ensemble sampling with replica exchange, gREM is particularly well suited for the effective simulation of first-order phase transitions characterized by “backbending” in the statistical temperature. While the metastable and unstable states in the vicinity of the first-order phase transition are masked by the enthalpy gap in temperature replica exchange method simulations, they are transformed into stable states through the parameterized effective sampling weights in gREM simulations, and join vapor and liquid phases with a succession of unimodal enthalpy distributions. The enhanced sampling across metastable and unstable states is achieved without the need to identify a “good” order parameter for biased sampling. We performed gREM simulations at various pressures below and near the critical pressure to examine the change in behavior of the vapor-liquid phase transition at different pressures. We observed a crossover from the first-order phase transition at low pressure, characterized by the backbending in the statistical temperature and the “kink” in the Gibbs free energy, to a continuous second-order phase transition near the critical pressure. The controlling mechanisms of nucleation and continuous phase transition are evident and the coexistence properties and phase diagram are found in agreement with literature results.

1.
C. J.
Geyer
and
A.
Thompson
,
J. Am. Stat. Assoc.
90
,
909
(
1995
).
2.
K.
Hukushima
and
K.
Nemoto
,
J. Phys. Sco. Jpn.
65
,
1604
(
1996
).
3.
Y.
Sugita
and
Y.
Okamoto
,
Chem. Phys. Lett.
314
,
141
(
1999
).
4.
R.
Zhou
and
B. J.
Berne
,
Proc. Natl. Acad. Sci. U.S.A.
99
,
12777
(
2002
).
5.
A. E.
Garcia
and
J. N.
Onuchic
,
Proc. Natl. Acad. Sci. U.S.A.
100
,
13898
(
2003
).
6.
U. H. E.
Hansmann
,
Chem. Phys. Lett.
281
,
140
(
1997
).
7.
T. B.
Woolf
,
D. M.
Zuckerman
,
N.
Lu
, and
H.
Jang
,
J. Mol. Graphics Modell.
22
,
359
(
2004
).
8.
R.
Yamamoto
and
W.
Kob
,
Phys. Rev. E
61
,
5473
(
2000
).
9.
E.
Flenner
and
G.
Szamel
,
Phys. Rev. E
73
,
061505
(
2006
).
10.
B. A.
Berg
and
T.
Celik
,
Phys. Rev. Lett.
69
,
2292
(
1992
).
11.
P. A.
Frantsuzov
and
V. A.
Mandelshtam
,
Phys. Rev. E
72
,
037102
(
2005
).
12.
P.
Poulain
,
F.
Calvo
,
R.
Antoine
,
M.
Broyer
, and
P.
Dugourd
,
Phys. Rev. E
73
,
056704
(
2006
).
13.
H.
Li
,
G.
Li
,
B. A.
Berg
, and
W.
Yang
,
J. Chem. Phys.
125
,
144902
(
2006
).
14.
A.
Mitsutake
,
Y.
Sugita
, and
Y.
Okamoto
,
Biopolymers
60
,
96
(
2001
).
15.
B. J.
Berne
and
J. E.
Straub
,
Curr. Opin. Struct. Biol.
7
,
181
(
1997
).
16.
D. J.
Earl
and
M. W.
Deem
,
Phys. Chem. Chem. Phys.
7
,
3910
(
2005
).
17.
H.
Kamberaj
and
A.
van der Vaart
,
J. Chem. Phys.
127
,
234102
(
2007
).
18.
C.
Zhang
and
J.
Ma
,
Phys. Rev. E
76
,
036708
(
2007
).
19.
E.
Lyman
,
F. M.
Ytreberg
, and
D. M.
Zuckerman
,
Phys. Rev. Lett.
96
,
028105
(
2006
).
20.
M. R.
Shirts
and
J. D.
Chodera
,
J. Chem. Phys.
129
,
124105
(
2008
).
21.
J.
Kim
,
T.
Keyes
, and
J. E.
Straub
,
J. Chem. Phys.
132
,
224107
(
2010
).
22.
Q.
Lu
,
J.
Kim
, and
J.
Straub
,
J. Phys. Chem. B
116
,
8654
(
2012
).
23.
B.
Smit
,
J. Chem. Phys.
96
,
8639
(
1992
).
24.
V. G.
Baidakov
,
S. P.
Protsenko
,
Z. R.
Kozlova
, and
G. G.
Chernykh
,
J. Chem. Phys.
126
,
214505
(
2007
).
25.
X. C.
Zeng
and
D. W.
Oxtoby
,
J. Chem. Phys.
94
,
4472
(
1991
).
26.
J. R.
Errington
,
J. Chem. Phys.
118
,
9915
(
2003
).
27.
A. R.
Imre
,
G.
Mayer
,
G.
Hazi
,
R.
Rozas
, and
T.
Kraska
,
J. Chem. Phys.
128
,
114708
(
2008
).
28.
V. V.
Brazhkin
,
Y. D.
Fomin
,
A. G.
Lyapin
,
V. N.
Ryzhov
, and
E. N.
Tsiok
,
J. Phys. Chem. B
115
,
14112
(
2011
).
29.
P. R.
ten Wolde
and
D.
Frenkel
,
J. Chem. Phys.
109
,
9901
(
1998
).
30.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids
(
Clarendon
,
1987
).
31.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulation: From Algorithms to Applications
(
Academic
,
1996
).
32.
J.
Frenkel
,
Kinetic Theory of Liquids
(
Dover
,
1955
).
33.
F. F.
Abraham
,
Homogeneous Nucleation Theory
(
Academic
,
1974
).
34.
K.
Binder
and
D.
Stauffer
,
Adv. Phys.
25
,
343
(
1976
).
35.
P. R.
ten Wolde
,
M. J.
Ruiz-Montero
, and
D.
Frenkel
,
J. Chem. Phys.
110
,
1591
(
1999
).
36.
M.
Schrader
,
P.
Virnau
, and
K.
Binder
,
Phys. Rev. E
79
,
061104
(
2009
).
37.
P.
Bhimalapuram
,
S.
Chakrabarty
, and
B.
Bagchi
,
Phys. Rev. Lett.
98
,
206104
(
2007
).
38.
J.
Wedekind
,
G.
Chkonia
,
J.
Wolk
,
R.
Strey
, and
D.
Reguera
,
J. Chem. Phys.
131
,
114506
(
2009
).
39.
A. M.
Ferrenberg
and
R. H.
Swenden
,
Phys. Rev. Lett.
63
,
1195
(
1989
).
40.
J.
Kim
,
T.
Keyes
, and
J. E.
Straub
,
J. Chem. Phys.
135
,
061103
(
2011
).
41.
L. G.
Rizzi
and
N. A.
Alves
,
J. Chem. Phys.
135
,
141101
(
2011
).
42.
M.
Church
,
C.
Ferry
, and
A. E.
van Giessen
,
J. Chem. Phys.
136
,
245102
(
2012
).
43.
J. E.
Lennard-Jones
,
Proc. R. Soc. London, Ser. A
106
,
441
(
1924
).
44.
S.
Trebst
,
M.
Troyer
, and
U. H. E.
Hansmann
,
J. Chem. Phys.
124
,
174903
(
2006
).
45.
D.
Chandler
,
Introduction to Modern Statistical Mechanics
(
Oxford University Press
,
New York
,
1987
).
46.
H. S.
Ashbaugh
,
J. Chem. Phys.
130
,
204517
(
2009
).
47.
J.
Vrabec
,
G. K.
Kedia
,
G.
Fuchs
, and
H.
Hasse
,
Mol. Phys.
104
,
1509
(
2006
).
48.
E. A.
Guggenheim
,
J. Chem. Phys.
13
,
253
(
1945
).
49.
H. B.
Callen
,
Thermodynamics: An Introduction to the Physical Theories of Equilibrium Thermostatics and Irreversible Thermodynamics
(
Wiley
,
1985
).
50.
F. H.
Stillinger
,
J. Chem. Phys.
38
,
1486
(
1963
).
51.
L. G.
MacDowell
,
V. K.
Shen
, and
J. R.
Errington
,
J. Chem. Phys.
125
,
034705
(
2006
).
52.
R.
Godawat
,
S. N.
Jamadagni
,
J. R.
Errington
, and
S.
Garde
,
Ind. Eng. Chem. Res.
47
,
3582
(
2008
).
53.
See supplementary material at http://dx.doi.org/10.1063/1.4794786 for the detailed description of ST-WHAM, a figure on linear effective temperature, and tables for parameters in gREM simulations.

Supplementary Material

You do not currently have access to this content.