The stochastic integral ensuring the Newton-Leibnitz chain rule is essential in stochastic energetics. Marcus canonical integral has this property and can be understood as the Wong-Zakai type smoothing limit when the driving process is non-Gaussian. However, this important concept seems not well-known for physicists. In this paper, we discuss Marcus integral for non-Gaussian processes and its computation in the context of stochastic energetics. We give a comprehensive introduction to Marcus integral and compare three equivalent definitions in the literature. We introduce the exact pathwise simulation algorithm and give the error analysis. We show how to compute the thermodynamic quantities based on the pathwise simulation algorithm. We highlight the information hidden in the Marcus mapping, which plays the key role in determining thermodynamic quantities. We further propose the tau-leaping algorithm, which advance the process with deterministic time steps when tau-leaping condition is satisfied. The numerical experiments and its efficiency analysis show that it is very promising.

1.
Ya. M.
Blanter
and
M.
Büttiker
,
Phys. Rep.
336
,
1
(
2000
).
2.
K.
Kanazawa
,
T.
Sagawa
, and
H.
Hayakawa
,
Phys. Rev. Lett.
108
,
210601
(
2012
).
3.
W.
Schoutens
,
Levy Processes in Finance: Pricing Financial Derivatives
(
Wiley
,
2003
).
4.
M.
Schürmann
,
White Noise on Bialgebras
,
Lecture Notes in Mathematics
Vol.
1544
(
Springer-Verlag
,
Berlin
,
1991
).
5.
D.
Applebaum
,
Lévy Processes and Stochastic Calculus
(
Cambridge University Press
,
Cambridge
,
2004
).
6.
K.
Sato
,
Lévy Process and Infinitely Divisible Distributions
(
Cambridge University Press
,
Cambridge
,
1999
).
7.
C.
Bustamante
,
J.
Liphardt
, and
F.
Ritort
,
Phys. Today
58
(
7
),
43
(
2005
).
8.
K.
Sekimoto
,
Stochastic Energetics
(
Springer-Verlag
,
Berlin
,
2010
).
10.
J.
Liphardt
,
S.
Dumont
,
S. B.
Smith
,
I.
Tinoco
 Jr.
, and
C.
Bustamante
,
Science
296
,
1832
(
2002
).
11.
S.
Toyabe
 et al.,
Nat. Phys.
6
,
988
(
2010
).
12.
D.
Collin
 et al.,
Nature (London)
437
,
231
(
2005
).
13.
E. H.
Trepagnier
 et al.,
Proc. Natl. Acad. Sci. U.S.A.
101
,
15038
(
2004
).
14.
E.
Wong
and
M.
Zakai
,
Ann. Math. Stat.
36
,
1560
(
1965
).
15.
17.
J.
Luczka
,
T.
Czernik
, and
P.
Hangii
,
Phys. Rev. E
56
,
3968
(
1997
).
19.
E.
Ben-Isaac
,
Y. K.
Park
,
G.
Popescu
,
F. L. H.
Brown
,
N. S.
Gov
, and
Y.
Shokef
,
Phys. Rev. Lett.
106
,
238103
(
2011
).
20.
21.
T. G.
Kurtz
,
E.
Pardoux
, and
P.
Protter
,
Ann. Inst. H. Poincare B
31
,
351
(
1995
) (available online at http://cat.inist.fr/?aModele=afficheN&cpsidt=3452872).
22.
S. I.
Marcus
,
IEEE Trans. Inf. Theory
24
(
2
),
164
(
1978
).
23.
24.
D.
Gillespie
,
J. Phys. Chem.
115
,
1716
(
2001
).
25.
T.
Li
,
Multiscale Model. Simul.
6
,
417
(
2007
).
26.
X.
Sun
,
J.
Duan
, and
X.
Li
,
Probab. Eng. Mech.
32
,
1
(
2013
).
27.
C. W.
Gardiner
,
Handbook of Stochastic Methods for Physics, Chemistry and Natural Sciences
(
Springer-Verlag
,
Berlin
,
2004
).
28.
M.
Di Paola
and
G.
Falsone
,
Probab. Eng. Mech.
8
(
3
),
197
(
1993
).
29.
M.
Di Paola
and
G.
Falsone
,
ASME J. Appl. Mech.
60
,
141
(
1993
).
30.
P. E.
Kloeden
and
E.
Platen
,
Numerical Solution of Stochastic Differential Equations
(
Springer-Verlag
,
Berlin
,
1999
).
31.
M.
Di Paola
and
M.
Vasta
,
Int. J. Non-Linear Mech.
32
(
5
),
855
(
1997
).
32.
33.
V.
Blickle
,
T.
Speck
,
L.
Helden
,
U.
Seifert
, and
C.
Bechinger
,
Phys. Rev. Lett.
96
,
070603
(
2006
).
34.
D.
Gillespie
,
J. Comput. Phys.
22
,
403
(
1976
).
35.
L. P.
Faucheux
and
A. J.
Libchaber
,
Phys. Rev. E
49
,
5158
(
1994
).
36.
A. W. C.
Lau
and
T. C.
Lubnesky
,
Phys. Rev. E
76
,
011123
(
2007
).
You do not currently have access to this content.