Accurate modelling and simulation of dynamic cellular events require two main ingredients: an adequate description of key chemical reactions and simulation of such chemical events in reasonable time spans. Quite logically, posing the right model is a crucial step for any endeavour in Computational Biology. However, more often than not, it is the associated computational costs which actually limit our capabilities of representing complex cellular behaviour. In this paper, we propose a methodology aimed at representing chains of chemical reactions by much simpler, reduced models. The abridgement is achieved by generation of model-specific delay distribution functions, consecutively fed to a delay stochastic simulation algorithm. We show how such delay distributions can be analytically described whenever the system is solely composed of consecutive first-order reactions, with or without additional “backward” bypass reactions, yielding an exact reduction. For models including other types of monomolecular reactions (constitutive synthesis, degradation, or “forward” bypass reactions), we discuss why one must adopt a numerical approach for its accurate stochastic representation, and propose two alternatives for this. In these cases, the accuracy depends on the respective numerical sample size. Our model reduction methodology yields significantly lower computational costs while retaining accuracy. Quite naturally, computational costs increase alongside network size and separation of time scales. Thus, we expect our model reduction methodologies to significantly decrease computational costs in these instances. We anticipate the use of delays in model reduction will greatly alleviate some of the current restrictions in simulating large sets of chemical reactions, largely applicable in pharmaceutical and biological research.

1.
B.
Munsky
and
M.
Khammash
,
J. Chem. Phys.
124
(
4
),
044104
(
2006
).
2.
T. G.
Kurtz
,
J. Chem. Phys.
57
(
7
),
2976
(
1972
).
4.
J. A.
Borghans
,
R. J.
de Boer
, and
L. A.
Segel
,
Bull. Math. Biol.
58
(
1
),
43
(
1996
).
5.
M.
Frenklach
,
Chem. Eng. Sci.
40
(
10
),
1843
(
1985
).
6.
D. T.
Gillespie
,
Y.
Cao
,
K. R.
Sanft
, and
L. R.
Petzold
,
J. Chem. Phys.
130
(
6
),
064103
(
2009
).
7.
E. A.
Mastny
,
E. L.
Haseltine
, and
J. B.
Rawlings
,
J. Chem. Phys.
127
(
9
),
094106
(
2007
).
8.
P.
Thomas
,
A. V.
Straube
, and
R.
Grima
,
BMC Syst. Biol.
6
(
1
),
39
(
2012
);
[PubMed]
P.
Thomas
,
R.
Grima
, and
A. V.
Straube
,
Phys. Rev. E Stat. Nonlin. Soft Matter Phys.
86
(
4 Pt 1
),
041110
(
2012
).
[PubMed]
9.
T. T.
Marquez-Lago
and
J.
Stelling
,
Biophys. J.
98
(
9
),
1742
(
2010
).
10.
M.
Barrio
,
K.
Burrage
,
A.
Leier
, and
T.
Tian
,
PLoS Comput. Biol.
2
(
9
),
e117
(
2006
).
11.
X.
Cai
,
J. Chem. Phys.
126
(
12
),
124108
(
2007
).
12.
13.
N. G.
van Kampen
,
Stochastic Processes in Physics and Chemistry
(
Elsevier Science
,
2007
).
14.
L. N.
Trefethen
and
D.
Bau
 III
,
Numerical Linear Algebra
(
SIAM
,
1997
).
15.
G.
Strang
,
Introduction to Linear Algebra
(
Wellesley Cambridge
,
2009
).
16.
T. T.
Marquez-Lago
,
A.
Leier
, and
K.
Burrage
,
BMC Syst. Biol.
4
,
19
(
2010
).
17.
S.
Wu
,
J.
Fu
,
Y.
Cao
, and
L.
Petzold
,
J. Chem. Phys.
134
(
13
),
134112
(
2011
).
18.
T.
Muir
,
A Treatise on the Theory of Determinants
(
Dover
,
1960
).
19.
K.
Veselic
,
Linear Algebra Appl.
27
,
167
(
1979
).
20.
H.
Jasiulewics
and
W.
Kordecki
,
Demonstratio Math.
36
(
1
),
231
(
2003
).
21.
M.
Akkouchi
,
J. Chungcheong Math. Soc.
21
(
4
),
501
510
(
2008
).
22.
R. B.
Sidje
,
ACM Trans. Math. Softw.
24
(
1
),
130
(
1998
).
23.
G. H.
Golub
and
C. F.
Van Loan
,
Matrix Computations
, 3rd ed. (
Johns Hopkins University Press
,
Baltimore
,
1996
).
24.
D. A.
Bini
,
L.
Gemignani
, and
F.
Tisseur
,
SIAM J. Matrix Anal. Appl.
27
(
1
),
153
(
2005
).
25.
J. W.
Demmel
,
O. A.
Marques
,
B. N.
Parlett
, and
C.
Vomel
,
SIAM J. Sci. Comput.
30
(
3
),
1508
(
2008
).
26.
A.
Nishida
,
R.
Suda
, and
Y.
Oyanagi
, in
Proceedings of the Fourth IMACS International Symposium on Iterative Methods in Scientific Computation
, edited by
D. R.
Kincaid
and
A. C.
Elster
(
IMACS
,
Austin, TX
,
1998
), Vol.
5
, p.
45
.
27.
P.
Keller
and
A.
Valleriani
,
J. Chem. Phys.
137
(
8
),
084106
(
2012
).
28.
T.
Jahnke
and
W.
Huisinga
,
J. Math. Biol.
54
(
1
),
1
(
2007
).
You do not currently have access to this content.