Nanoparticles have been proposed as a promising material for creating devices that harvest, transport, and manipulate energy and electrons. Ultrafast charge carrier dynamics represent a critical design aspect and are dependent on both size and shape of the nanoparticle. Spectroscopic investigation of the electronic structure and dynamics of these systems is complicated by sample inhomogeneity, which broadens peaks and leads to ambiguity in interpretation of both spectra and dynamics. Here, we use two-dimensional electronic spectroscopy to remove inhomogeneous broadening and to clarify interpretation of measured dynamics. We specifically investigate the effect of nanoparticle shape on the electronic structure and ultrafast electronic dynamics in the band-edge exciton states of CdSe quantum dots, nanorods, and nanoplatelets. Particle size was chosen to enable straightforward comparisons of the effects of particle shape on the spectra and dynamics without retuning the laser source. The spectra were measured with low pulse powers (generally <1 nJ/pulse), using short pulses (∼12 fs) to minimize interference from solvent contributions to the spectra, ambiguities in the dynamics due to pulse-overlap effects, and contributions to the dynamics from multi-exciton effects. The lowest two exciton states are clearly resolved in spectra of quantum dots but unresolved for nanorods and nanoplates, in agreement with previous spectroscopic and theoretical results. In all nanoparticles, ultrafast dynamics measurements show strong evidence of electronic relaxation into the lowest energy exciton state within ∼30 fs, a timescale not observable in previous dynamics measurements of similar systems. These dynamics are unambiguously assigned to hole relaxation, as the higher lying electronic excited states are not energetically accessible in these experiments. Clear evidence of coherent superpositions of the lowest two exciton states were not seen in any of the particles studied, in contrast to recent results from work on quantum dots.

2.
G.
Scholes
,
Adv. Funct. Mater.
18
,
1157
(
2008
).
3.
P.
Kambhampati
,
Acc. Chem. Res.
44
,
1
(
2011
).
4.
A.
Ekimov
,
F.
Hache
,
M.
Schanneklein
,
D.
Ricard
,
C.
Flytzanis
,
I.
Kudryavtsev
,
T.
Yazeva
,
A.
Rodina
, and
A.
Efros
,
J. Opt. Soc. Am. B
10
,
100
(
1993
).
5.
A.
Efros
and
M.
Rosen
,
Annu. Rev. Mater. Sci.
30
,
475
(
2000
).
6.
C.
Burda
,
X.
Chen
,
R.
Narayanan
, and
M.
El-Sayed
,
Chem. Rev.
105
,
1025
(
2005
).
7.
A.
Ekimov
and
A.
Onushchenko
,
JETP Lett.
34
,
345
(
1981
).
8.
A.
Henglein
,
Ber. Bunsenges. Phys. Chem.
86
,
301
(
1982
).
9.
C.
Leatherdale
,
W.
Woo
,
F.
Mikulec
, and
M.
Bawendi
,
J. Phys. Chem. B
106
,
7619
(
2002
).
10.
C.
Murray
,
D.
Norris
, and
M.
Bawendi
,
J. Am. Chem. Soc.
115
,
8706
(
1993
).
11.
M.
Mohamed
,
C.
Burda
, and
M.
El-Sayed
,
Nano Lett.
1
,
589
(
2001
).
12.
D.
Norris
and
M.
Bawendi
,
Phys. Rev. B: Condens. Matter
53
,
16338
(
1996
).
13.
V.
Soloviev
,
A.
Eichhofer
,
D.
Fenske
, and
U.
Banin
,
J. Am. Chem. Soc.
122
,
2673
(
2000
).
14.
V.
Soloviev
,
A.
Eichhofer
,
D.
Fenske
, and
U.
Banin
,
Phys. Status Solidi B
224
,
285
(
2001
).
15.
N.
Soloviev
,
A.
Eichhofer
,
D.
Fenske
, and
U.
Banin
,
J. Am. Chem. Soc.
123
,
2354
(
2001
).
16.
M.
Nirmal
,
C.
Murray
, and
M.
Bawendi
,
Phys. Rev. B: Condens. Matter
50
,
2293
(
1994
).
17.
D.
Norris
,
A.
Sacra
,
C.
Murray
, and
M.
Bawendi
,
Phys. Rev. Lett.
72
,
2612
(
1994
).
18.
S.
Sewall
,
R.
Cooney
, and
P.
Kambhampati
,
Appl. Phys. Lett.
94
,
243116
(
2009
).
19.
P.
Guyot-Sionnest
,
M.
Shim
,
C.
Matranga
, and
M.
Hines
,
Phys. Rev. B: Condens. Matter
60
,
R2181
(
1999
).
20.
C.
Burda
,
S.
Link
,
M.
Mohamed
, and
M.
El-Sayed
,
J. Phys. Chem. B
105
,
12286
(
2001
).
21.
E.
McArthur
,
A.
Morris-Cohen
,
K.
Knowles
, and
E.
Weiss
,
J. Phys. Chem. B
114
,
14514
(
2010
).
22.
D.
Norris
and
M.
Bawendi
,
J. Chem. Phys.
103
,
5260
(
1995
).
23.
V.
Klimov
,
J. Phys. Chem. B
104
,
6112
(
2000
).
24.
M.
Lupo
,
F.
Della Sala
,
L.
Carbone
,
M.
Zavelani-Rossi
,
A.
Fiore
,
L.
Luer
,
D.
Polli
,
R.
Cingolani
,
L.
Manna
, and
G.
Lanzani
,
Nano Lett.
8
,
4582
(
2008
).
25.
P.
Yu
,
J.
Nedeljkovic
,
P.
Ahrenkiel
,
R.
Ellingson
, and
A.
Nozik
,
Nano Lett.
4
,
1089
(
2004
).
26.
J.
He
,
H.
Zhong
, and
G.
Scholes
,
Phys. Rev. Lett.
105
,
046601
(
2010
).
27.
G.
Scholes
,
J.
Kim
,
C.
Wong
,
V.
Huxter
,
P.
Nair
,
K.
Fritz
, and
S.
Kumar
,
Nano Lett.
6
,
1765
(
2006
).
28.
M.
Graham
,
Y.
Ma
, and
G.
Fleming
,
Nano Lett.
8
,
3936
(
2008
).
29.
M.
Salvador
,
P.
Nair
,
M.
Cho
, and
G.
Scholes
,
Chem. Phys.
350
,
56
(
2008
).
30.
C.
Wong
and
G.
Scholes
,
J. Phys. Chem. A
115
,
3797
(
2011
).
31.
D.
Turner
,
Y.
Hassan
, and
G.
Scholes
,
Nano Lett.
12
,
880
(
2012
).
32.
L.
Brus
,
J. Chem. Phys.
79
,
5566
(
1983
).
33.
V.
Huxter
,
V.
Kovalevskij
, and
G.
Scholes
,
J. Phys. Chem. B
109
,
20060
(
2005
).
34.
V.
Huxter
and
G.
Scholes
,
J. Chem. Phys.
125
,
144716
(
2006
).
35.
M.
Salvador
,
M.
Graham
, and
G.
Scholes
,
J. Chem. Phys.
125
,
184709
(
2006
).
36.
A.
Franceschetti
and
A.
Zunger
,
Phys. Rev. Lett.
78
,
915
(
1997
).
37.
S.
Sewall
,
A.
Franceschetti
,
R.
Cooney
,
A.
Zunger
, and
P.
Kambhampati
,
Phys. Rev. B: Condens. Matter
80
,
081310
(
2009
).
38.
J.
Hu
,
L.
Wang
,
L.
Li
,
W.
Yang
, and
A.
Alivisatos
,
J. Phys. Chem. B
106
,
2447
(
2002
).
39.
J.
Li
and
L.
Wang
,
Nano Lett.
3
,
1357
(
2003
).
40.
Q.
Zhao
,
P.
Graf
,
W.
Jones
,
A.
Franceschetti
,
J.
Li
,
L.
Wang
, and
K.
Kim
,
Nano Lett.
7
,
3274
(
2007
).
41.
O.
Prezhdo
,
Acc. Chem. Res.
42
,
2005
(
2009
).
42.
K.
Hyeon-Deuk
and
O.
Prezhdo
,
ACS Nano
6
,
1239
(
2012
).
43.
T.
Sadowski
and
R.
Ramprasad
,
Phys. Rev. B: Condens. Matter
76
,
235310
(
2007
).
44.
V.
Klimov
,
A.
Mikhailovsky
,
D.
McBranch
,
C.
Leatherdale
, and
M.
Bawendi
,
Science
287
,
1011
(
2000
).
45.
M.
Achermann
,
A.
Bartko
,
J.
Hollingsworth
, and
V.
Klimov
,
Nat. Phys.
2
,
557
(
2006
).
46.
K.
Knowles
,
E.
McArthur
, and
E.
Weiss
,
ACS Nano
5
,
2026
(
2011
).
47.
V.
Klimov
,
A.
Mikhailovsky
,
D.
McBranch
,
C.
Leatherdale
, and
M.
Bawendi
,
Phys. Rev. B: Condens. Matter
61
,
13349
(
2000
).
48.
L.
Li
,
J.
Hu
,
W.
Yang
, and
A.
Alivisatos
,
Nano Lett.
1
,
349
(
2001
).
49.
L.
Chen
,
H.
Bao
,
T.
Tan
,
O.
Prezhdo
, and
X.
Ruan
,
J. Phys. Chem. C
115
,
11400
(
2011
).
50.
G.
Cantele
,
D.
Ninno
, and
G.
Iadonisi
,
Nano Lett.
1
,
121
(
2001
).
51.
S.
Ithurria
and
B.
Dubertret
,
J. Am. Chem. Soc.
130
,
16504
(
2008
).
52.
S.
Ithurria
,
M.
Tessier
,
B.
Mahler
,
R.
Lobo
,
B.
Dubertret
, and
A.
Efros
,
Nature Mater.
10
,
936
(
2011
).
53.
S.
Ithurria
,
G.
Bousquet
, and
B.
Dubertret
,
J. Am. Chem. Soc.
133
,
3070
(
2011
).
54.
See supplementary material at http://dx.doi.org/10.1063/1.4772465 (i) for verification of the crystal structures of each type of nanocrystal by X-ray diffraction; (ii) for comparison of typical linear absorption spectra of each type of nanocrystal with laser spectra; (iii) for details of the TG-FROG procedure and results; (iv) for a description of data processing procedures; (v) for discussion of the role of solvent response in high pulse power experiments; (vi) for comparison of combined, rephasing, and nonrephasing two-dimensional spectra; (vii) for a brief description of detailed interpretation of 2DES via Feynmann pathways; and (viii) for comparison of the magnitudes of resonant signal and nonresonant solvent response.
55.
L.
Carbone
,
C.
Nobile
,
M.
De Giorgi
,
F.
Sala
,
G.
Morello
,
P.
Pompa
,
M.
Hytch
,
E.
Snoeck
,
A.
Fiore
,
I.
Franchini
,
M.
Nadasan
,
A.
Silvestre
,
L.
Chiodo
,
S.
Kudera
,
R.
Cingolani
,
R.
Krahne
, and
L.
Manna
,
Nano Lett.
7
,
2942
(
2007
).
56.
Z.
Peng
and
X.
Peng
,
J. Am. Chem. Soc.
124
,
3343
(
2002
).
57.
T.
Brixner
,
T.
Mancal
,
I.
Stiopkin
, and
G.
Fleming
,
J. Chem. Phys.
121
,
4221
(
2004
).
58.
J.
Hybl
,
A.
Ferro
, and
D.
Jonas
,
J. Chem. Phys.
115
,
6606
(
2001
).
59.
M.
Cowan
,
J.
Ogilvie
, and
R.
Miller
,
Chem. Phys. Lett.
386
,
184
(
2004
).
60.
V.
Klimov
,
D.
McBranch
,
C.
Leatherdale
, and
M.
Bawendi
,
Phys. Rev. B: Condens. Matter
60
,
13740
(
1999
).
61.
A.
Shabaev
and
A.
Efros
,
Nano Lett.
4
,
1821
(
2004
).
62.
E.
Harel
,
A.
Fidler
, and
G.
Engel
,
Proc. Natl. Acad. Sci. U.S.A.
107
,
16444
(
2010
).
63.
E.
Harel
,
A.
Fidler
, and
G.
Engel
,
J. Phys. Chem. A
115
,
3787
(
2011
).

Supplementary Material

You do not currently have access to this content.