Ceria (CeO2) is a promising catalyst for the reduction of carbon dioxide (CO2) to liquid fuels and commodity chemicals, in part because of its high oxygen storage capacity, yet the fundamentals of CO2 adsorption, activation, and reduction on ceria surfaces remain largely unknown. We use density functional theory, corrected for onsite Coulombic interactions (GGA+U), to explore various adsorption sites and configurations for CO2 on stoichiometric and reduced ceria (110), the latter with either an in-plane oxygen vacancy or a split oxygen vacancy. We find that CO2 adsorption on both reduced ceria (110) surfaces is thermodynamically favored over the corresponding adsorption on stoichiometric ceria (110), but the most stable adsorption configuration consists of CO2 adsorbed parallel to the reduced ceria (110) surface at a split oxygen vacancy. Structural changes in the CO2 molecule are also observed upon adsorption. At the split vacancy, the molecule bends out of plane to form a unidentate carbonate with the remaining oxygen anion at the surface; this is in stark contrast to the bridged carbonate observed for CO2 adsorption at the in-plane vacancy. Also, we analyze the pathways for CO2 conversion to CO on reduced ceria (110). The subtle difference in the energies of activation for the elementary steps suggest that CO2 dissociation is favored on the split vacancy, while the reverse process of CO oxidation may favor the formation of the in-plane vacancy. We thus show how the structure and properties of the ceria catalyst govern the mechanism of CO2 activation and reduction.

1.
V.
Havran
,
M. P.
Duduković
, and
C. S.
Lo
,
Ind. Eng. Chem. Res.
50
,
7089
(
2011
).
2.
G.
Centi
and
S.
Perathoner
,
Catal. Today
148
,
191
(
2009
).
3.
R. N.
Compton
,
P. W.
Reinhardt
, and
C. D.
Cooper
,
J. Chem. Phys.
63
,
3821
(
1975
).
4.
E. E.
Benson
,
C. P.
Kubiak
,
A. J.
Sathrum
, and
J. M.
Smieja
,
Chem. Soc. Rev.
38
,
89
(
2009
).
5.
Y.
Kohno
,
T.
Tanaka
,
T.
Funabiki
, and
S.
Yoshida
,
Phys. Chem. Chem. Phys.
2
,
2635
(
2000
).
6.
A.
Markovits
,
A.
Fahmi
, and
C.
Minot
,
J. Mol. Struct.: THEOCHEM
371
,
219
(
1996
).
7.
H.
He
,
P.
Zapol
, and
L. A.
Curtiss
,
J. Phys. Chem. C
114
,
21474
(
2010
).
8.
D. C.
Sorescu
,
J.
Lee
,
W. A.
Al-Saidi
, and
K. D.
Jordan
,
J. Chem. Phys.
134
,
104707
(
2011
).
9.
D. C.
Sorescu
,
W. A.
Al-Saidi
, and
K. D.
Jordan
,
J. Chem. Phys.
135
,
124701
(
2011
).
10.
K.
Teramura
,
T.
Tanaka
,
H.
Ishikawa
,
Y.
Kohno
, and
T.
Funabiki
,
J. Phys. Chem. B
108
,
346
(
2004
).
11.
R.
Besson
,
M. R.
Vargas
, and
L.
Favergeon
,
Surf. Sci.
606
,
490
(
2012
).
12.
A.
Trovarelli
,
Catalysis by Ceria and Related Materials
, Vol.
2
(
Imperial College Press
,
London
,
2002
).
13.
Z.
Yang
,
T. K.
Woo
,
M.
Baudin
, and
K.
Hermansson
,
J. Chem. Phys.
120
,
7741
(
2004
).
14.
S.
Fabris
,
S.
de Gironcoli
,
S.
Baroni
,
G.
Vicario
, and
G.
Balducci
,
Phys. Rev. B
71
,
041102
(
2005
).
15.
M.
Nolan
,
V. S.
Verdugo
, and
H.
Metiu
,
Surf. Sci.
602
,
2734
(
2008
).
16.
M.
Burbano
,
D.
Marrocchelli
,
B.
Yildiz
,
H. L.
Tuller
,
S. T.
Norberg
,
S.
Hull
,
P. A.
Madden
, and
G. W.
Watson
,
J. Phys. Condens. Matter
23
,
255402
(
2011
).
17.
N. V.
Skorodumova
,
M.
Baudin
, and
K.
Hermansson
,
Phys. Rev. B
69
,
075401
(
2004
).
18.
B.
Herschend
,
M.
Baudin
, and
K.
Hermansson
,
Surf. Sci.
599
,
173
(
2005
).
19.
B.
Herschend
,
M.
Baudin
, and
K.
Hermansson
,
Chem. Phys.
328
,
345
(
2006
).
20.
M.
Nolan
,
S.
Grigoleit
,
D. C.
Sayle
,
S. C.
Parker
, and
G. W.
Watson
,
Surf. Sci.
576
,
217
(
2005
).
21.
M.
Nolan
,
S. C.
Parker
, and
G. W.
Watson
,
Surf. Sci.
595
,
223
(
2005
).
22.
M. V.
Ganduglia-Pirovano
,
J. L. F.
Da Silva
, and
J.
Sauer
,
Phys. Rev. Lett.
102
,
026101
(
2009
).
23.
Z.
Yang
,
X.
Yu
,
Z.
Lu
,
S.
Li
, and
K.
Hermansson
,
Phys. Lett. A
373
,
2786
(
2009
).
24.
S.
Fabris
,
G.
Vicario
,
G.
Balducci
,
S.
de Gironcoli
, and
S.
Baroni
,
J. Phys. Chem. B
109
,
22860
(
2005
).
25.
N. M.
Galea
,
D. O.
Scanlon
,
B. J.
Morgan
, and
G. W.
Watson
,
Mol. Simul.
35
,
577
(
2009
).
26.
A.
Gotte
,
K.
Hermansson
, and
M.
Baudin
,
Surf. Sci.
552
,
273
(
2004
).
27.
Z.
Yang
,
Z.
Fu
,
Y.
Wei
, and
K.
Hermansson
,
Chem. Phys. Lett.
450
,
286
(
2008
).
28.
T.
Jin
,
Y.
Zhou
,
G. J.
Mains
, and
J. M.
White
,
J. Phys. Chem.
91
,
5931
(
1987
).
29.
K.
Otsuka
,
Y.
Wang
,
E.
Sunada
, and
I.
Yamanaka
,
J. Catal.
175
,
152
(
1998
).
30.
Z.
Yang
,
T. K.
Woo
, and
K.
Hermansson
,
Chem. Phys. Lett.
396
,
384
(
2004
).
31.
A.
Bueno-López
,
K.
Krishna
, and
M.
Makkee
,
Appl. Catal., A
342
,
144
(
2008
).
32.
C.
Müller
,
C.
Freysoldt
,
M.
Baudin
, and
K.
Hermansson
,
Chem. Phys.
318
,
180
(
2005
).
33.
V.
Shapovalov
and
H.
Metiu
,
J. Catal.
245
,
205
(
2007
).
34.
Z.
Hu
and
H.
Metiu
,
J. Phys. Chem. C
115
,
17898
(
2011
).
35.
Z.
Yang
,
Z.
Fu
,
Y.
Zhang
, and
R.
Wu
,
Catal. Lett.
141
,
78
(
2011
).
36.
G.
Kim
,
Ind. Eng. Chem. Prod. Res. Dev.
21
,
267
(
1982
).
37.
T.
Bunluesin
,
R. J.
Gorte
, and
G. W.
Graham
,
Appl. Catal., B
15
,
107
(
1998
).
38.
S.
Hilaire
,
X.
Wang
,
T.
Luo
,
R. J.
Gorte
, and
J.
Wagner
,
Appl. Catal., A
258
,
271
(
2004
).
39.
L.
Pino
,
V.
Recupero
,
S.
Beninati
,
A. K.
Shukla
,
M. S.
Hegde
, and
P.
Bera
,
Appl. Catal., A
225
,
63
(
2002
).
40.
L.
Pino
,
A.
Vita
,
M.
Cordaro
,
V.
Recupero
, and
M.
Hegde
,
Appl. Catal. A
243
,
135
(
2003
).
41.
Y.
Lykhach
,
T.
Staudt
,
R.
Streber
,
M. P.
Lorenz
,
A.
Bayer
,
H.-P.
Steinrück
, and
J.
Libuda
,
Eur. Phys. J. B
75
,
89
(
2010
).
42.
T.
Staudt
,
Y.
Lykhach
,
N.
Tsud
,
T.
Skála
,
K.
Prince
,
V.
Matolín
, and
J.
Libuda
,
J. Catal.
275
,
181
(
2010
).
43.
P.
Hohenberg
and
W.
Kohn
,
Phys. Rev.
136
,
B864
(
1964
).
44.
W.
Kohn
and
L. J.
Sham
,
Phys. Rev.
140
,
A1133
(
1965
).
45.
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
47
,
558
(
1993
).
46.
G.
Kresse
and
J.
Furthmüller
,
Comput. Mater. Sci.
6
,
15
(
1996
).
47.
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B
54
,
11169
(
1996
).
48.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
49.
P. E.
Blöchl
,
Phys. Rev. B
50
,
17953
(
1994
).
50.
G.
Kresse
and
D.
Joubert
,
Phys. Rev. B
59
,
1758
(
1999
).
51.
P. E.
Blöchl
,
O.
Jepsen
, and
O. K.
Andersen
,
Phys. Rev. B
49
,
16223
(
1994
).
52.
D.
Koelling
,
A.
Boring
, and
J.
Wood
,
Solid State Commun.
47
,
227
(
1983
).
53.
S.
Hill
and
C.
Catlow
,
J. Phys. Chem. Solids
54
,
411
(
1993
).
54.
D.
Mullins
,
S.
Overbury
, and
D.
Huntley
,
Surf. Sci.
409
,
307
(
1998
).
55.
G.
Kresse
,
P.
Blaha
,
J. L. F.
Da Silva
, and
M. V.
Ganduglia-Pirovano
,
Phys. Rev. B
72
,
237101
(
2005
).
56.
S.
Fabris
,
S.
de Gironcoli
,
S.
Baroni
,
G.
Vicario
, and
G.
Balducci
,
Phys. Rev. B
72
,
237102
(
2005
).
57.
J. F.
Herbst
,
R. E.
Watson
, and
J. W.
Wilkins
,
Phys. Rev. B
17
,
3089
(
1978
).
58.
V. I.
Anisimov
and
O.
Gunnarsson
,
Phys. Rev. B
43
,
7570
(
1991
).
59.
C.
Loschen
,
J.
Carrasco
,
K. M.
Neyman
, and
F.
Illas
,
Phys. Rev. B
75
,
035115
(
2007
).
60.
E. A.
Kümmerle
and
G.
Heger
,
J. Solid State Chem.
147
,
485
(
1999
).
61.
N. V.
Skorodumova
,
R.
Ahuja
,
S. I.
Simak
,
I. A.
Abrikosov
,
B.
Johansson
, and
B. I.
Lundqvist
,
Phys. Rev. B
64
,
115108
(
2001
).
62.
M.
Nolan
,
S. C.
Parker
, and
G. W.
Watson
,
J. Phys. Chem. B
110
,
2256
(
2006
).
63.
M.
Nolan
and
G. W.
Watson
,
J. Phys. Chem. B
110
,
16600
(
2006
).
64.
M.
Nolan
,
J. Phys. Chem. C
113
,
2425
(
2009
).
65.
E.
Sanville
,
S. D.
Kenny
,
R.
Smith
, and
G.
Henkelman
,
J. Comput. Chem.
28
,
899
(
2007
).
66.
H.
Jónsson
,
G.
Mills
, and
K. W.
Jacobsen
, in
Classical and Quantum Dynamics in Condensed Phase Simulations
, edited by
B. J.
Berne
,
G.
Ciccotti
, and
D. F.
Coker
(
World Scientific
,
Singapore
,
1998
), pp.
385
404
.
67.
G.
Henkelman
,
B. P.
Uberuaga
, and
H.
Jonsson
,
J. Chem. Phys.
113
,
9901
(
2000
).
68.
C. T.
Campbell
and
C. H. F.
Peden
,
Science
309
,
713
(
2005
).
69.
M.
Fronzi
,
A.
Soon
,
B.
Delley
,
E.
Traversa
, and
C.
Stampfl
,
J. Chem. Phys.
131
,
104701
(
2009
).
70.
J. A.
Farmer
and
C. T.
Campbell
,
Science
329
,
933
(
2010
).
71.
72.
M.
Nolan
,
S. C.
Parker
, and
G. W.
Watson
,
Phys. Chem. Chem. Phys.
8
,
216
(
2006
).
73.
C.
Li
,
Y.
Sakata
,
T.
Arai
,
K.
Domen
,
K.-i.
Maruya
, and
T.
Onishi
,
J. Chem. Soc., Faraday Trans. 1
85
,
929
(
1989
).
74.
M.
Henderson
,
C.
Perkins
,
M.
Engelhard
,
S.
Thevuthasan
, and
C.
Peden
,
Surf. Sci.
526
,
1
(
2003
).
75.
A. D.
Becke
and
K. E.
Edgecombe
,
J. Chem. Phys.
92
,
5397
(
1990
).
76.
T. X. T.
Sayle
,
S. C.
Parker
, and
C. R. A.
Catlow
,
J. Chem. Soc., Chem. Commun.
1992
,
977
.
77.
T.
Sayle
,
S.
Parker
, and
C.
Catlow
,
Surf. Sci.
316
,
329
(
1994
).
78.
T. X. T.
Sayle
,
S. C.
Parker
, and
D. C.
Sayle
,
Phys. Chem. Chem. Phys.
7
,
2936
(
2005
).
You do not currently have access to this content.