We investigate the phase separation of the “ultrasoft restricted primitive model” (URPM), a coarse-grained representation of oppositely charged, interpenetrating polyelectrolytes, within a mean-field description based on the “chemical picture.” The latter distinguishes between free ions and dimers of oppositely charged ions (Bjerrum pairs) which are in chemical equilibrium governed by a law of mass action. Interactions between ions, and between ions and dimers are treated within linearized Poisson-Boltzmann theory, at four levels of approximation corresponding to increasingly refined descriptions of the interactions. The URPM is found to phase separate into a dilute phase of dimers, and a concentrated phase of mostly free (unpaired) ions below a critical temperature Tc. The phase diagram differs, however, considerably from the predictions of recent simulations; Tc is about three times higher, and the critical density is much lower than the corresponding simulation data [D. Coslovich, J. P. Hansen, and G. Kahl, Soft Matter7, 1690 (2011) https://doi.org/10.1039/c0sm01090a]. Possible reasons for this unexpected failure of mean-field theory are discussed. The Kirkwood line, separating the regimes of monotonically decaying and damped oscillatory decay of the charge-charge correlation function at large distances is determined within the random phase approximation.

1.
B.
Philipp
,
H.
Dautzenberg
,
K. T.
Linov
,
T.
Kötz
, and
W.
Davydoff
,
Prog. Polym. Sci.
14
,
91
(
1989
).
2.
E.
Tsuchida
,
J. Macromol. Sci. Pure Appl. Chem.
31
,
1
(
1994
).
3.
H.
Dautzenberg
,
Macromolecules
30
,
7810
(
1997
).
4.
H. M.
Buchhammer
,
M.
Mende
, and
M.
Oelmann
,
Colloids Surf., A
218
,
151
(
2003
).
5.
G. H.
Fredrickson
,
The Equilibrium Theory of Inhomogeneous Polymers
(
Oxford University Press
,
New York
,
2006
).
6.
M.
Castelnovo
and
J. F.
Joanny
,
Eur. Phys. J. E
6
,
377
(
2001
).
7.
J.
Lee
,
Y. O.
Popov
, and
G. H.
Fredrickson
,
J. Chem. Phys.
128
,
224908
(
2008
).
8.
A. Y.
Grosberg
,
P. G.
Khalatur
, and
A. R.
Khoklov
,
Mater. Chem. Phys.
3
,
709
(
1982
).
9.
J.
Dautenhahn
and
C. K.
Hall
,
Macromolecules
27
,
5399
(
1994
).
10.
P. G.
Bolhuis
,
A. A.
Louis
,
J. P.
Hansen
, and
E. J.
Meijer
,
J. Chem. Phys.
114
,
4296
(
2001
).
11.
M. E.
Leunissen
,
C. G.
Christova
,
A. P.
Hynninen
,
C. P.
Royall
,
A. I.
Campbell
,
A.
Imhof
,
M.
Dijkstra
,
R.
van Roij
, and
A.
van Blaaderen
,
Nature (London)
437
,
235
(
2005
).
12.
J. B.
Caballero
,
E. G.
Noya
, and
C.
Vega
,
J. Chem. Phys.
127
,
244910
(
2007
).
13.
E.
Sanz
,
M. E.
Leunissen
,
A.
Fortini
,
A.
van Blaaderen
, and
M.
Dijkstra
,
J. Phys. Chem. B
112
,
10861
(
2008
).
14.
D. A.
McQuarrie
,
Statistical Mechanics
(
Harper & Row
,
New York
,
1976
).
15.
D.
Coslovich
,
J. P.
Hansen
, and
G.
Kahl
,
Soft Matter
7
,
1690
(
2011
).
16.
D.
Coslovich
,
J. P.
Hansen
, and
G.
Kahl
,
J. Chem. Phys.
134
,
244514
(
2011
).
17.
18.
C.
Valeriani
,
P. J.
Camp
,
J. W.
Zwanikken
,
R.
van Roij
, and
M.
Dijkstra
,
Soft Matter
6
,
2793
(
2010
).
19.
G.
Stell
,
K. C.
Wu
, and
B.
Larsen
,
Phys. Rev. Lett.
37
,
1369
(
1976
).
20.
A. Z.
Panagiotopoulos
,
J. Chem. Phys.
116
,
3007
(
2002
).
21.
I. M.
Caillol
,
D.
Levesque
, and
J. J.
Weis
,
J. Chem. Phys.
116
,
10794
(
2002
).
22.
E.
Luijten
,
M. E.
Fisher
, and
A. Z.
Panagiotopoulos
,
Phys. Rev. Lett.
88
,
185701
(
2002
).
23.
N.
Bjerrum
,
Kgl. Dan. Vidensk. Selsk. Mat.-Fys. Medd.
7
,
1
(
1926
).
24.
M. E.
Fisher
and
Y.
Levin
,
Phys. Rev. Lett.
71
,
3826
(
1993
).
25.
D.
Ruelle
,
Statistical Mechanics: Rigorous Results
(
World Scientific
,
Singapore
,
1999
).
26.
Y.
Levin
and
M. E.
Fisher
,
Physica A
225
,
164
(
1996
).
27.
J. G.
Kirkwood
,
Chem. Rev.
19
,
275
(
1936
).
28.
E.
Waisman
and
J. L.
Lebowitz
,
J. Chem. Phys.
56
,
3086
(
1972
).
29.
R. J. F.
Leote de Carvalho
and
R.
Evans
,
Mol. Phys.
83
,
619
(
1994
).
30.
J. P.
Hansen
and
P.
Viot
,
J. Stat. Phys.
38
,
823
(
1985
).
You do not currently have access to this content.