As a first step to understand the role of molecular or chemical polydispersity in self-assembly, we put forward a coarse-grained model that describes the spontaneous formation of quasi-linear polymers in solutions containing two self-assembling species. Our theoretical framework is based on a two-component self-assembled Ising model in which the chemical bidispersity, i.e., the presence of two distinct chemical entities, is parameterized in terms of the strengths of the binding free energies that depend on the monomer species involved in the pairing interaction. Depending upon the relative values of the binding free energies involved, different morphologies of assemblies that include both components are formed, exhibiting random, blocky or alternating ordering of the two components in the assemblies. Analyzing the model for the case of blocky ordering, which is of most practical interest, we find that the transition from conditions of minimal assembly to those characterized by strong polymerization can be described by a critical concentration that depends on the concentration ratio of the two species. Interestingly, the distribution of monomers in the assemblies is different from that in the original distribution, i.e., the ratio of the concentrations of the two components put into the system. The monomers with a smaller binding free energy are more abundant in short assemblies and monomers with a larger binding affinity are more abundant in longer assemblies. Under certain conditions the two components congregate into separate supramolecular polymeric species and in that sense phase separate. We find strong deviations from the expected growth law for supramolecular polymers even for modest amounts of a second component, provided it is chemically sufficiently distinct from the main one.

1.
S. J.
Holder
and
N. A. J. M.
Sommerdijk
,
Polym. Chem.
2
,
1018
(
2011
).
2.
N. A. J. M.
Sommerdijk
and
G.
de With
,
Chem. Rev.
108
,
4499
4550
(
2008
).
3.
A.
McPherson
,
BioEssays
27
,
447
(
2005
).
4.
J.-M.
Lehn
,
Polym. Int.
51
,
825
(
2002
).
5.
T. F. A.
de Greef
,
M. M. J.
Smulders
,
M.
Wolffs
,
A.
Schenning
,
R. P.
Sijbesma
, and
E. W.
Meijer
,
Chem. Rev.
109
,
5687
5754
(
2009
).
6.
R.
Koopmans
and
A.
Aggeli
,
Curr. Opin. Microbiol.
13
,
327
(
2010
).
7.
Supramolecular Polymers
, 2nd ed., edited by
A.
Ciferri
(
CRC
,
2005
).
8.
R. G.
Weiss
and
P.
Terech
,
Molecular Gels: Materials with Self-assembled Fibrillar Networks
(
Springer
,
2006
).
9.
Advances in Chemical Engineering: Engineering Aspects of Self-Organising Materials
, edited by
R.
Koopmans
(
Academic
,
2009
).
10.
K.
Ariga
,
J. P.
Hill
,
M. V.
Lee
,
A.
Vinu
,
A.
Charvet
, and
S.
Acharya
,
Sci. Technol. Adv. Mater.
9
,
014109
(
2008
).
11.
P. W. K.
Rothemund
,
Nature (London)
440
,
297
(
2006
).
12.
A.
Aggeli
,
I. A.
Nyrkova
,
M.
Bell
,
R.
Harding
,
L.
Carrick
,
T. C. B.
McLeish
,
A. N.
Semenov
, and
N.
Boden
,
Proc. Natl. Acad. Sci. U.S.A.
98
,
11857
(
2001
).
13.
R.
Martin
,
Chem. Rev.
96
,
3043
3064
(
1996
).
14.
L.
Brunsveld
,
B. J. B.
Folmer
,
E.
Meijer
, and
R. P.
Sijbesma
,
Chem. Rev.
101
,
4071
(
2001
).
15.
D.
Zhao
and
J. S.
Moore
,
Org. Biomol. Chem.
1
,
3471
(
2003
).
16.
L.
Bouteiller
,
Adv. Polym. Sci.
207
,
79
(
2007
).
17.
S. E.
Paramonov
,
V.
Gauba
, and
J. D.
Hartgerink
,
Macromolecules
38
,
7555
7561
(
2005
).
18.
J.-H.
Ryu
,
N.-K.
Oh
,
W.-C.
Zin
, and
M.
Lee
,
J. Am. Chem. Soc.
126
,
3551
(
2004
).
19.
P.
Sollich
,
J. Phys.: Condens. Matter
14
,
R79
(
2002
).
20.
L.
Leibler
and
H.
Benoit
,
Polymer
22
,
195
(
1981
).
21.
K. M.
Hong
and
J.
Noolandi
,
Polym. Commun.
25
,
265
(
1984
).
22.
S. T.
Milner
,
T. A.
Witten
, and
M. E.
Cates
,
Macromolecules
22
,
853
(
1989
).
23.
C.
Burger
,
W.
Ruland
, and
A. N.
Semenov
,
Macromolecules
23
,
3339
(
1990
).
24.
J.
van Gestel
,
P.
van der Schoot
, and
M.
Michels
,
J. Chem. Phys.
120
,
8253
(
2004
).
25.
H. A. J.
Markvoort
,
M. ten
Eikelder
,
P. A.
Hilbers
,
T. F.
de Greef
, and
E.
Meijer
,
Nat. Commun.
2
,
509
(
2011
).
26.
M. M. J.
Smulders
,
M. M. L.
Nieuwenhuizen
,
M.
Grossman
,
I. A. W.
Filot
,
C. C. M.
Lee
,
T. F. A.
de Greef
,
A. P. H. J.
Schenning
,
A. R. A.
Palmans
, and
E. W.
Meijer
,
Macromolecules
44
,
6581
6587
(
2011
).
27.
M. M. J.
Smulders
,
I. A. W.
Filot
,
J. M. A.
Leenders
,
P.
van der Schoot
,
A. R. A.
Palmans
,
A. P. H. J.
Schenning
, and
E. W.
Meijer
,
J. Am. Chem. Soc.
132
,
611
619
(
2010
).
28.
I.
Nyrkova
,
A.
Semenov
,
A.
Aggeli
,
M.
Bell
,
N.
Boden
, and
T.
McLeish
,
Eur. Phys. J. B
17
,
499
(
2000
).
29.
P.
van der Schoot
,
Supramolecular Polymers
, 2nd ed. (
CRC
,
2005
), Chap. 2, pp.
77
106
.
30.
P.
van der Schoot
,
Advances In Chemical Engineering
(
Academic
,
2009
), Vol.
35
, Chap. 3, p.
45
77
.
31.
B. H.
Zimm
and
J. K.
Bragg
,
J. Chem. Phys.
31
,
526
(
1957
).
32.
A.
Vedenov
,
A. M.
Dykhne
, and F.-K. M. D.,
Sov. Phys. Usp.
14
,
715
(
1972
).
33.
I. M.
Lifshitz
,
Sov. Phys. JETP
38
,
545
(
1974
).
34.
V.
Yashin
,
Y.
Kudryavtsev
,
E.
Govorun
, and
A.
Litmanovich
,
Macromol. Theory Simul.
6
,
247
(
1997
).
35.
M.
Rubinstein
and
R. H.
Colby
,
Polymer Physics
(
Oxford University Press
,
New York
,
2003
).
36.
G.
Odian
,
Principles of Polymerization
(
Wiley Interscience
,
2004
).
37.
A. D.
Litmanovich
,
Y. V.
Kudryavtsev
,
Y. A.
Kriksin
, and
O. A.
Kononenko
,
Macromol. Theory Simul.
12
,
11
(
2003
).
38.
A. D.
Litmanovich
,
V. V.
Podbelskiy
, and
Y. V.
Kudryavtsev
,
Macromol. Theory Simul.
19
,
269
(
2010
).
39.
T.
Vermonden
,
J.
van der Gucht
,
P.
de Waard
,
A.
Marcelis
,
E.
Besseling
,
N. A. M.
Sudhlter
,
G.
Fleer
, and
M. Cohen
Stuart
,
Macromolecules
36
,
7035
(
2003
).
40.
N.
Goldenfeld
,
Lectures on Phase Transitions and Renormalization Group
, 1st ed. (
Adison Wesley
,
1992
).
41.
P. J.
Flory
,
Principles of Polymer Chemistry
(
Cornell University Press
,
New York
,
1953
).
42.
N.
Hadjichristidis
,
S.
Pispas
, and
G.
Floudas
,
Block Copolymers: Synthetic Strategies, Physical Properties, and Applications
(
Wiley
,
2003
).
43.
S.
Jiang
,
J.
Deng
, and
W.
Yang
,
Polymer J.
40
,
543
(
2008
).
44.
N.
Wilding
,
P.
Sollich
, and
M.
Buzzacchi
,
Phys. Rev. E
77
,
011501
(
2008
).
You do not currently have access to this content.