The interfacial structure of heptane and toluene at oil-silica interfaces has previously been studied by sum frequency generation [Z. Yang et al., J. Phys. Chem. C.113, 20355 (2009)] https://doi.org/10.1021/jp9043122. It was found that the toluene molecule is almost perpendicular to the silica surface with a tilt angle of about 25°. Here, we have investigated the structural properties of toluene and heptane at oil-silica interfaces using molecular dynamics simulations for two different surfaces: the oxygen-bridging (hydrophobic) and hydroxyl-terminated (hydrophilic) surfaces of quartz (silica). Based on the density profile, it was found that both heptane and toluene oscillate on silica surfaces, with heptane showing more oscillation peaks. Furthermore, the toluene molecules of the first layer were found to have an asymmetric distribution of orientations, with more CH3 groups pointed away from the silica surface than towards the silica surface. These findings are generally consistent with previous experiments, and reveal enhanced molecular structures of liquids at oil-silica interfaces.

1.
H.-J.
Butt
,
K.
Graf
, and
M.
Kappl
,
Physics and Chemistry of Interfaces
, 2nd ed. (
Wiley-VCH
,
Weinheim
,
2006
).
2.
A. K.
Doerr
,
M.
Tolan
,
T.
Seydel
, and
W.
Press
,
Physica B
248
,
263
(
1998
).
3.
C.-J.
Yu
,
A. G.
Richter
,
J.
Kmetko
,
A.
Datta
, and
P.
Dutta
,
Europhys. Lett.
50
,
487
(
2000
).
4.
R. G.
Horn
and
J. N.
Israelachvili
,
J. Chem. Phys.
75
,
1400
(
1981
).
5.
H. K.
Christenson
,
J. Chem. Phys.
78
,
6906
(
1983
).
6.
H. K.
Christenson
and
R. G.
Horn
,
Chem. Phys. Lett.
98
,
45
(
1983
).
7.
H. K.
Christenson
,
D. W. R.
Gruen
,
R. G.
Horn
, and
J. N.
Israelachvili
,
J. Chem. Phys.
87
,
1834
(
1987
).
8.
J.
Klein
and
E.
Kumacheva
,
J. Chem. Phys.
108
,
6996
(
1998
). Detailed solvation force as a function of gap distance for toluene was not reported in this paper. However, it was reported that the sharp liquid-to-solid phase transition on increasing confinement between films of the thickness corresponds to four layers for toluene and six or seven layers for cyclohexane.
9.
M. L.
Gee
,
P. M.
McGuiggan
, and
J. N.
Israelachvili
,
J. Chem. Phys.
93
,
1895
(
1990
).
10.
H. K.
Christenson
,
Chem. Phys. Lett.
118
,
455
(
1985
).
11.
J. H.
Hunt
,
P.
Guyot-Sionnest
, and
Y. R.
Shen
,
Chem. Phys. Lett.
133
,
189
(
1987
).
12.
X. D.
Zhu
,
H.
Suhr
, and
Y. R.
Shen
,
Phys. Rev. B
35
,
3047
(
1987
).
13.
X.
Zhuang
,
P. B.
Miranda
,
D.
Kim
, and
Y. R.
Shen
,
Phys. Rev. B
59
,
12632
(
1999
).
14.
Z.
Yang
,
Q.
Li
,
R.
Hua
,
M. R.
Gray
, and
K. C.
Chou
,
J. Phys. Chem. C
113
,
20355
(
2009
).
15.
M. R.
Brindza
,
F.
Ding
,
J. T.
Foukas
, and
R. A.
Walker
,
J. Chem. Phys.
132
,
114701
(
2010
).
16.
Y. R.
Shen
,
Nature (London)
337
,
519
(
1989
).
17.
P. B.
Miranda
and
Y. R.
Shen
,
J. Phys. Chem. B
103
,
3292
(
1999
).
18.
L.
Zhang
,
W.
Liu
,
Y. R.
Shen
, and
D. G.
Gahill
,
J. Phys. Chem. C
111
,
2069
(
2007
).
19.
W.-T.
Liu
and
Y. R.
Shen
,
Phys. Rev. Lett.
101
,
016101
(
2008
).
20.
O.
Esenturk
and
R. A.
Walker
,
J. Chem. Phys.
125
,
174701
(
2006
).
21.
E. L.
Hommel
and
H. C.
Allen
,
Analyst
128
,
750
(
2003
).
22.
F.
Ding
,
Z.
Hu
,
Q.
Zhong
,
K.
Manfred
,
R. R.
Gattass
,
M. R.
Brindza
,
J. T.
Fourkas
,
R. A.
Walker
, and
J. D.
Weeks
,
J. Phys. Chem. C
114
,
17651
(
2010
).
23.
A. M.
Buchbinder
,
E.
Weitz
, and
F. M.
Geiger
,
J. Am. Chem. Soc.
132
,
14661
(
2010
).
24.
A.
Morita
and
T.
Ishiyama
,
Phys. Chem. Chem. Phys.
10
,
5801
(
2008
).
25.
A.
Yeung
,
T.
Dabros
, and
J.
Maliyah
,
J. Colloid Interface Sci.
208
,
241
(
1998
).
26.
L. W.
Lake
,
Enhanced Oil Recovery
(
Prentice Hall
,
New Jersey
,
1989
).
27.
R. N.
Lamb
and
D. N.
Furlong
,
J. Chem. Soc. Faraday Trans. 1
78
,
61
(
1982
).
28.
L. T.
Zhuravlev
,
Colloids Surf., A
173
,
1
(
2000
).
29.
F. F.
Abraham
,
J. Chem. Phys.
68
,
3713
(
1978
).
30.
M.
Rao
,
B. J.
Berne
,
J. K.
Percus
, and
M. H.
Kalos
,
J. Chem. Phys.
71
,
3802
(
1979
).
31.
J.
Gao
,
W. D.
Luedtke
, and
U.
Landman
,
Phys. Rev. Lett.
79
,
705
(
1997
).
32.
L. G.
Camara
and
F.
Bresme
,
J. Chem. Phys.
120
,
11355
(
2004
).
33.
D. K.
Hore
,
D. S.
Walker
, and
G. L.
Richmond
,
J. Am. Chem. Soc.
129
,
752
(
2007
).
34.
J. C.
Wang
and
K. A.
Fichthorn
,
J. Chem. Phys.
108
,
1653
(
1997
).
35.
J.
Gao
,
W. D.
Luedtke
, and
U.
Landman
,
J. Chem. Phys.
106
,
4309
(
1997
).
36.
J.
Gao
,
W. D.
Luedtke
, and
U.
Landman
,
J. Phys. Chem. B
101
,
4013
(
1997
).
37.
V.
Kalyanasundaram
,
D. E.
Spearot
, and
A. P.
Malshe
,
Langmuir
25
,
7553
(
2009
).
38.
R. Y.
Jin
,
K.
Song
, and
W. L.
Hase
,
J. Phys. Chem. B
104
,
2692
(
2000
).
39.
H.
Docherty
and
P. T.
Cummings
,
Soft Matter
6
,
1640
(
2010
).
40.
H.
Matsubara
,
F.
Pichierri
, and
K.
Kurihara
,
J. Chem. Phys.
134
,
044536
(
2011
).
41.
T. K.
Xia
and
U.
Landman
,
Science
261
,
1310
(
1993
).
42.
B.
Coasne
,
C.
Alba-Simionesco
,
F.
Audonnet
,
G.
Dosseh
, and
K. E.
Gubbins
,
Langmuir
25
,
10648
(
2009
).
43.
A. R.
van Buuren
,
S.-J.
Marrink
, and
H. J. C.
Berendsen
,
J. Phys. Chem.
97
,
9206
(
1993
).
44.
M.
Kunieda
,
K.
Nakaoka
,
Y.
Liang
,
C. R.
Miranda
,
A.
Ueda
,
S.
Takahashi
,
H.
Okabe
, and
T.
Matsuoka
,
J. Am. Chem. Soc.
132
,
18281
(
2010
).
45.
J. G.
Harris
,
J. Phys. Chem.
96
,
5077
(
1992
).
46.
M.
Kawamata
and
T.
Yamamoto
,
J. Phys. Soc. Jpn.
66
,
2350
(
1997
).
47.
Z.
Hu
and
J. D.
Weeks
,
J. Phys. Chem. C
114
,
10202
(
2010
).
48.
T. P. M.
Goumans
,
A.
Wander
,
W. A.
Brown
, and
C. R. A.
Catlow
,
Phys. Chem. Chem. Phys.
9
,
2146
(
2007
).
49.
J.
Yang
and
E. G.
Wang
,
Phys. Rev. B
73
,
035406
(
2006
).
50.
V. V.
Murashov
,
J. Phys. Chem. B
109
,
4144
(
2005
).
51.
G.
Kresse
and
G.
Furthmuller
,
Phys. Rev. B
54
,
11169
(
1996
).
52.
G. M.
Rignanese
,
A. D.
Vita
,
J. C.
Charlier
,
X.
Gonze
, and
R.
Car
,
Phys. Rev. B
61
,
13250
(
2000
).
53.
B.
Hess
,
C.
Kutzner
,
D.
van der Spoel
, and
E.
Lindahl
,
J. Chem. Theory Comput.
4
,
435
(
2008
).
54.
J. B.
Klauda
,
B. R.
Brooks
,
A. D.
Mackerrel
 Jr.
,
R. M.
Venable
, and
R. W.
Pastor
,
J. Phys. Chem. B
109
,
5300
(
2005
).
55.
R. T.
Cygan
,
J. J.
Liang
, and
A. G.
Kalinichev
,
J. Phys. Chem. B
108
,
1255
(
2004
).
56.
A. A.
Skelton
,
D. J.
Wesolowski
, and
P. T.
Cummings
,
Langmuir
27
,
8700
(
2011
).
57.
A. A.
Skelton
,
P.
Fenter
,
J. D.
Kubicki
,
D. J.
Wesolowski
, and
P. T.
Cummings
,
J. Phys. Chem. C
115
,
2076
(
2011
).
58.
U.
Essman
,
L.
Perera
,
M. L.
Berkowitz
,
T.
Darden
,
H.
Lee
, and
L. G.
Pedersen
,
J. Chem. Phys.
103
,
8577
(
1995
).
59.
E. C.
Bromiley
and
D.
Quiggle
,
Ind. Eng. Chem.
25
,
1136
(
1933
).
61.
W.
Humphrey
,
A.
Dalke
, and
K.
Schulten
,
J. Mol. Graph.
14
,
33
(
1996
).
62.
C. M.
Baker
and
G. H.
Grant
,
J. Chem. Theory. Comput.
3
,
530
(
2007
).
You do not currently have access to this content.