Multivalent ligand-receptor systems often show an enhancement in binding compared to the constituent monovalent systems. This “cooperativity effect” is often attributed to the favorable spatial preorganisation of the ligands by the connecting spacer that leads to a reduction of entropy loss at ligand binding. A different factor that has been proposed to contribute to the cooperativity effect is “rebinding”: As soon as a single ligand-receptor complex dissociates, the presence of another ligand “on coat-tails” will increase the probability of another binding event, which in turn will drive the system to a state where all ligands are bound. In this article, we derive a first quantitative description of the rebinding effect. In order to model the inherent memory effect of a spacer-connected system, we pursue a mathematical approach based on Markov state models and conformation dynamics. The theoretical investigations are illustrated by studying different prototypic ligand-receptor systems.

1.
M.
Mammen
,
W.-K.
Choi
, and
G. M.
Whitesides
, “
Polyvalent interactions in biological systems: Implications for design and use of multivalent ligands and inhibitors
,”
Angew. Chem., Int. Ed.
37
,
2754
2794
(
1998
).
2.
D. J.
Diestler
and
E. W.
Knapp
, “
Statistical mechanics of the stability of multivalent ligand-receptor complexes
,”
J. Phys. Chem. C
114
(
12
),
5287
5304
(
2010
).
3.
J.
Rao
,
J.
Lahiri
,
R. M.
Weis
, and
G. M.
Whitesides
, “
Design, synthesis, and characterization of a high-affinity trivalent system derived from Vancomycin and L-Lys-D-Ala-D-Ala
,”
J. Am. Chem. Soc.
122
,
2698
2710
(
2000
).
4.
M.
Shan
,
A.
Bujotzek
,
F.
Abendroth
,
O.
Seitz
,
M.
Weber
, and
R.
Haag
, “
Conformational analysis of bivalent estrogen receptor-ligands: From intramolecular to intermolecular binding
,”
Chem. Bio. Chem.
12
(
17
),
2587
2598
(
2011
).
5.
E. T.
Mack
,
P. W.
Snyder
,
R.
Perez-Castillejos
, and
G. M.
Whitesides
, “
Using covalent dimers of human Carbonic Anhydrase II to model bivalency in immunoglobulins
,”
J. Am. Chem. Soc.
133
,
11701
11715
(
2011
).
6.
J.-H.
Prinz
,
H.
Wu
,
M.
Sarich
,
B.
Keller
,
M.
Fischbach
,
M.
Held
,
J. D.
Chodera
,
Ch.
Schütte
, and
F.
Noé
, “
Markov models of molecular kinetics: Generation and Validation
,”
J. Chem. Phys.
134
,
174105
(
2011
).
7.
X.
Huang
,
Y.
Yao
,
G. R.
Bowman
,
J.
Sun
,
L. J.
Guibas
,
G.
Carlsson
, and
V. S.
Pande
, “
Constructing multi-resolution Markov State Models (MSMs) to elucidate RNA hairpin folding mechanisms
,”
Pac. Symp. Biocomput.
15
,
228
239
(
2010
).
8.
G. R.
Bowman
,
K. A.
Beauchamp
,
G.
Boxer
, and
V. S.
Pande
, “
Progress and challenges in the automated construction of Markov State Models for full protein systems
,”
J. Chem. Phys.
131
(
12
),
124101
(
2009
).
9.
P.
Deuflhard
, “
From molecular dynamics to conformation dynamics in drug design
,” in
Trends in Nonlinear Analysis
, edited by
M.
Kirkilionis
,
S.
Krömker
,
R.
Rannacher
, and
F.
Tomi
(
Springer
,
2003
), pp.
269
287
.
10.
S.
Kube
and
M.
Weber
, “
A coarse-graining method for the identification of transition rates between molecular conformations
,”
J. Chem. Phys.
126
(
2
),
024103
(
2007
).
11.
W. K.
Hastings
, “
Monte Carlo sampling methods using Markov chains and their applications
,”
Biometrika
57
,
97
109
(
1970
).
12.
R. M.
Neal
, “
Probabilistic inference using Markov chain Monte Carlo methods
,” Technical Report CRG-TR-93-1,
1993
.
13.
See supplementary material at http://dx.doi.org/10.1063/1.4739501 for additional details and simulation parameters (section A), for the derivation of Equation (1) (section B), and for an extensive expression of X2, along with an illustrative example (section C).
14.
F.
Noé
,
Ch.
Schütte
,
E.
Vanden-Eijnden
,
L.
Reich
, and
T. R.
Weikl
, “
Constructing the equilibrium ensemble of folding pathways from short off-equilibrium simulations
,”
Proc. Natl. Acad. Sci. U.S.A.
106
(
45
),
19011
19016
(
2009
).
15.
M.
Sarich
,
F.
Noé
, and
Ch.
Schütte
, “
On the approximation quality of Markov state models
,”
Mult. Mod. Sim.
8
(
4
),
1154
77
(
2010
).
16.
E.
Vanden-Eijnden
and
M.
Venturoli
, “
Markovian milestoning with Voronoi tesselation
,”
J. Chem. Phys.
130
,
194101
(
2009
).
17.
M.
Weber
and
S.
Kube
,
AIP Conf. Proc.
1048
,
593
596
(
2008
).
18.
M.
Weber
, “
A subspace approach to molecular Markov State Models via a new infinitesimal generator
,” Habilitation thesis, Freie Universität Berlin, Department of Mathematics and Computer Science,
2011
. Available via http://opus4.kobv.de/opus4-zib/frontdoor/index/index/docId/1402.
19.
Ch.
Schütte
,
F.
Noé
,
J.
Lu
,
M.
Sarich
, and
E.
Vanden-Eijnden
, “
Markov State Models based on milestoning
,”
J. Chem. Phys.
134
(
20
),
204105
(
2011
).
20.
M.
Weber
,
W.
Rungsarityotin
, and
A.
Schliep
, “
An indicator for the number of clusters using a linear map to simplex structure
,” in
From Data and Information Analysis to Knowledge Engineering. Studies in Classification, Data Analysis, and Knowledge Organization
(
Springer
,
Heidelberg
,
2006
), pp.
103
110
.
21.
P.
Deuflhard
and
M.
Weber
, “
Robust Perron cluster analysis in conformation dynamics
,” in
Linear Algebra and Applications
, Special Issue on Matrices and Mathematical Biology Vol. 398, edited by
M.
Dellnitz
,
S.
Kirkland
,
M.
Neumann
, and
C.
Schütte
(
Elsevier
,
2005
), pp
161
184
.
22.
S.
Perumal
,
A.
Hofmann
,
N.
Scholz
,
E.
Rühl
, and
Ch.
Graf
, “
Kinetics study of the binding of multivalent ligands on size-selected gold nanoparticles
,”
Langmuir
27
(
8
),
4456
4464
(
2011
).

Supplementary Material

You do not currently have access to this content.