Electronic structure calculations and direct chemical dynamics simulations are used to study the formation and decomposition of dioxetane on its ground state singlet potential energy surface. The stationary points for 1O2 + C2H4, the singlet ·O–O–CH2–CH2· biradical, the transition state (TS) connecting this biradical with dioxetane, and the two transition states and gauche ·O–CH2–CH2–O· biradical connecting dioxetane with the formaldehyde product molecules are investigated at different levels of electronic structure theory including UB3LYP, UMP2, MRMP2, and CASSCF and a range of basis sets. The UB3LYP/6-31G* method was found to give representative energies for the reactive system and was used as a model for the simulations. UB3LYP/6-31G* direct dynamics trajectories were initiated at the TS connecting the ·O–O–CH2–CH2· biradical and dioxetane by sampling the TS's vibrational energy levels, and rotational and reaction coordinate energies, with Boltzmann distributions at 300, 1000, and 1500 K. This corresponds to the transition state theory model for trajectories that pass the TS. The trajectories were directed randomly towards both the biradical and dioxetane. A small fraction of the trajectories directed towards the biradical recrossed the TS and formed dioxetane. The remainder formed 1O2 + C2H4 and of these ∼ 40% went directly from the TS to 1O2 + C2H4 without getting trapped and forming an intermediate in the ·O–O–CH2–CH2· biradical potential energy minimum, a non-statistical result. The dioxetane molecules which are formed dissociate to two formaldehyde molecules with a rate constant two orders of magnitude smaller than that predicted by Rice–Ramsperger–Kassel–Marcus theory. The reaction dynamics from dioxetane to the formaldehyde molecules do not follow the intrinsic reaction coordinate or involve trapping in the gauche ·O–CH2–CH2–O· biradical potential energy minimum. Important non-statistical dynamics are exhibited for this reactive system.
Skip Nav Destination
Article navigation
28 July 2012
Research Article|
July 26 2012
Direct dynamics simulation of dioxetane formation and decomposition via the singlet ·O–O–CH2–CH2· biradical: Non-RRKM dynamics
Rui Sun (孙睿);
Rui Sun (孙睿)
1Department of Chemistry and Biochemistry,
Texas Tech University
, Lubbock, Texas 79409, USA
Search for other works by this author on:
Kyoyeon Park (박교연);
Kyoyeon Park (박교연)
1Department of Chemistry and Biochemistry,
Texas Tech University
, Lubbock, Texas 79409, USA
2Department of Chemistry and Biochemistry,
University of California
, San Diego, La Jolla, California 92903, USA
Search for other works by this author on:
Wibe A. de Jong;
Wibe A. de Jong
3Environmental Molecular Science Laboratory,
Pacific Northwest National Laboratory
, Richland, Washington 99352, USA
Search for other works by this author on:
Hans Lischka;
Hans Lischka
1Department of Chemistry and Biochemistry,
Texas Tech University
, Lubbock, Texas 79409, USA
Search for other works by this author on:
Theresa L. Windus;
Theresa L. Windus
4Department of Chemistry,
Iowa State University,
Ames, Iowa 50011, USA
Search for other works by this author on:
William L. Hase
William L. Hase
1Department of Chemistry and Biochemistry,
Texas Tech University
, Lubbock, Texas 79409, USA
Search for other works by this author on:
J. Chem. Phys. 137, 044305 (2012)
Article history
Received:
March 18 2012
Accepted:
June 28 2012
Citation
Rui Sun, Kyoyeon Park, Wibe A. de Jong, Hans Lischka, Theresa L. Windus, William L. Hase; Direct dynamics simulation of dioxetane formation and decomposition via the singlet ·O–O–CH2–CH2· biradical: Non-RRKM dynamics. J. Chem. Phys. 28 July 2012; 137 (4): 044305. https://doi.org/10.1063/1.4736843
Download citation file:
Sign in
Don't already have an account? Register
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Sign in via your Institution
Sign in via your InstitutionPay-Per-View Access
$40.00