Electronic structure calculations and direct chemical dynamics simulations are used to study the formation and decomposition of dioxetane on its ground state singlet potential energy surface. The stationary points for 1O2 + C2H4, the singlet ·O–O–CH2–CH2· biradical, the transition state (TS) connecting this biradical with dioxetane, and the two transition states and gauche ·O–CH2–CH2–O· biradical connecting dioxetane with the formaldehyde product molecules are investigated at different levels of electronic structure theory including UB3LYP, UMP2, MRMP2, and CASSCF and a range of basis sets. The UB3LYP/6-31G* method was found to give representative energies for the reactive system and was used as a model for the simulations. UB3LYP/6-31G* direct dynamics trajectories were initiated at the TS connecting the ·O–O–CH2–CH2· biradical and dioxetane by sampling the TS's vibrational energy levels, and rotational and reaction coordinate energies, with Boltzmann distributions at 300, 1000, and 1500 K. This corresponds to the transition state theory model for trajectories that pass the TS. The trajectories were directed randomly towards both the biradical and dioxetane. A small fraction of the trajectories directed towards the biradical recrossed the TS and formed dioxetane. The remainder formed 1O2 + C2H4 and of these ∼ 40% went directly from the TS to 1O2 + C2H4 without getting trapped and forming an intermediate in the ·O–O–CH2–CH2· biradical potential energy minimum, a non-statistical result. The dioxetane molecules which are formed dissociate to two formaldehyde molecules with a rate constant two orders of magnitude smaller than that predicted by Rice–Ramsperger–Kassel–Marcus theory. The reaction dynamics from dioxetane to the formaldehyde molecules do not follow the intrinsic reaction coordinate or involve trapping in the gauche ·O–CH2–CH2–O· biradical potential energy minimum. Important non-statistical dynamics are exhibited for this reactive system.

1.
G.
Tonachini
,
H. B.
Schlegel
,
F.
Bernardi
, and
M. A.
Robb
,
J. Am. Chem. Soc.
112
,
483
(
1990
).
2.
L. B.
Harding
and
W. A.
Goddard
 III
,
J. Am. Chem. Soc.
102
,
439
(
1980
).
3.
A.
Maranzana
,
G.
Ghigo
, and
G.
Tonachini
,
J. Am. Chem. Soc.
122
,
1414
(
2000
).
4.
C. A.
Taatjes
,
J. Phys. Chem. A
110
,
4299
(
2006
).
5.
Combustion Chemistry
, edited by
W. C.
Gardiner
 Jr.
(
Spring-Verlag
,
New York
,
1984
).
6.
W.
Tsang
and
R. F.
Hampson
,
J. Phys. Chem. Ref. Data
15
,
1087
(
1986
).
7.
W.
Tsang
J. Phys. Chem. Ref. Data
20
,
221
(
1991
).
8.
P.
Barbe
,
F.
Baronnet
,
R.
Martin
, and
D.
Perrin
,
Int. J. Chem. Kinet.
30
,
503
(
1998
).
9.
N. D.
Stothard
and
R. W.
Walker
,
J. Chem. Soc., Faraday Trans.
87
,
241
, (
1991
).
10.
K.
Mach
,
J.
Novakova
,
V.
Hanus
, and
Z.
Dolejsek
,
Collect. Czech. Chem. Commun.
51
,
2675
(
1986
).
11.
T.
Ingham
,
R. W.
Walker
, and
R. E.
Woolford
,
Symp. Int. Combust. Proc.
25
,
767
(
1994
).
12.
P.
Dagaut
,
M.
Cathonnet
, and
J. C.
Boettner
,
J. Phys. Chem.
92
,
661
(
1988
).
13.
A.
Maranzana
,
G.
Ghigo
,
G.
Tonachini
, and
J. R.
Barker
,
J. Phys. Chem. A
,
112
,
3656
(
2008
).
14.
C. J.
Chen
and
J. W.
Bozzelli
,
J. Phys. Chem.
104
,
9715
(
2000
).
15.
H.
Hua
,
B.
Ruscic
, and
B.
Wang
,
Chem. Phys.
311
,
335
(
2005
).
16.
K.
Park
,
A.
West
,
E.
Raheja
,
B.
Sellner
,
H.
Lischka
,
T. L.
Windus
, and
W. L.
Hase
,
J. Chem. Phys.
133
,
184306
(
2010
).
17.
H. E.
O’Neal
and
W. H.
Richardson
,
J. Am. Chem. Soc.
92
,
6553
(
1970
).
18.
L. B.
Harding
and
W. A.
Goddard
 III
,
J. Am. Chem. Soc.
99
,
4520
(
1977
).
19.
W.
Adam
and
W. J.
Baader
,
J. Am. Chem. Soc.
107
,
410
(
1985
).
20.
N.
Turro
,
P.
Lechtken
,
N. E.
Schore
,
G.
Schuster
,
H. C.
Steinmetzer
, and
A.
Yekta
,
Acc. Chem. Res.
7
,
97
(
1974
).
21.
W. H.
Richardson
and
V. F.
Hodge
,
J. Am. Chem. Soc.
93
,
3996
(
1971
).
22.
M.
Reguero
,
F.
Bernardi
,
A.
Bottoni
,
M.
Olivucci
, and
M. A.
Robb
,
J. Am. Chem. Soc.
113
,
1566
(
1991
).
23.
S.
Wilsey
,
F.
Bernardi
,
M.
Olivucci
,
M. A.
Robb
,
S.
Murphy
, and
W.
Adam
,
J. Phys. Chem. A
103
,
1699
(
1999
).
24.
L.
De Vico
,
Y.
Liu
,
J. W.
Krogh
, and
R.
Lindh
,
J. Phys. Chem. A
111
,
8013
(
2007
).
25.
C.
Tanaka
,
J.
Tanaka
, and
M.
Matsumoto
,
Phys. Chem. Chem. Phys.
13
,
16005
(
2011
).
26.
U.
Lourderaj
,
K.
Park
, and
W. L.
Hase
,
Int. Rev. Phys. Chem.
27
,
361
(
2008
).
27.
L.
Sun
and
W. L.
Hase
,
Rev. Comput. Chem.
19
,
79
(
2003
).
28.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
29.
P. J.
Stephens
,
F. J.
Devlin
,
C. F.
Chabalowski
, and
M. J.
Frisch
,
J. Phys. Chem.
98
,
11623
(
1994
).
30.
R. H.
Hertwig
and
W.
Koch
,
Chem. Phys. Lett.
268
,
345
(
1997
).
31.
P. C.
Hariharan
and
J. A.
Pople
,
Theoret. Chem. Acc.
28
,
213
(
1973
).
32.
M. M.
Francl
,
W. J.
Pletro
,
W. J.
Hehre
,
J. S.
Binkley
,
M. S.
Gordon
,
D. J.
DeFrees
, and
J. A.
Pople
,
J. Chem. Phys.
77
,
3654
(
1982
).
33.
B. O.
Roos
,
Adv. Chem. Phys.
69
,
399
(
1987
).
34.
M. W.
Schmidt
and
M. S.
Gordon
,
Annu. Rev. Phys. Chem.
48
,
233
(
1998
).
35.
K.
Hirao
,
Chem. Phys. Lett.
190
,
374
(
1992
).
36.
H.
Nakano
,
J. Chem. Phys.
99
,
7983
(
1993
).
37.
T. H.
Dunning
 Jr.
,
J. Chem. Phys.
90
,
1007
(
1989
).
38.
T.
Baer
and
W. L.
Hase
,
Unimolecular Reaction Dynamics. Theory and Experiments
(
Oxford University Press
,
New York
,
1996
).
39.
C. M.
Aikens
,
S. P.
Webb
,
R. L.
Bell
,
G. D.
Fletcher
,
M. W.
Schmidt
, and
M. S.
Gordon
,
Theoret. Chem. Acc.
110
,
233
(
2003
).
40.
R.
Ditchfield
,
W. J.
Hehre
, and
J. A.
Pople
,
J. Chem. Phys.
54
,
724
(
1971
).
41.
W. J.
Hehre
,
R.
Ditchfield
, and
J. A.
Pople
,
J. Chem. Phys.
56
,
2257
(
1972
).
42.
R.
Krishnan
,
J. S.
Binkley
,
R.
Seeger
, and
J. A.
Pople
,
J. Chem. Phys.
72
,
650
(
1980
).
43.
K.
Fukui
,
J. Phys. Chem.
74
,
4161
(
1970
).
44.
D. L.
Bunker
,
J. Chem. Phys.
37
,
393
(
1962
).
45.
N. C.
Blais
and
D. L.
Bunker
,
J. Chem. Phys.
37
,
2713
(
1962
).
46.
L.
Yang
,
R.
Sun
, and
W. L.
Hase
,
J. Chem. Theory Comput.
7
,
3478
(
2011
).
47.
W. L.
Hase
,
J. Phys. Chem.
90
,
365
(
1986
).
48.
S. K.
Gray
,
D. W.
Noid
, and
B. G.
Sumpter
,
J. Chem. Phys.
101
,
4062
(
1994
).
49.
T.
Schlick
,
Molecular Modeling and Simulation
(
Springer
,
New York
,
2000
).
50.
Ch.
Schlier
and
A.
Seiter
,
J. Phys. Chem. A
102
,
9399
(
1998
).
51.
A.
Szalbo
and
N. S.
Ostlund
,
Modern Quantum Chemistry, Introduction to Advanced Electronic Structure Theory
(
Dover
,
New York
,
1996
).
52.
W. L.
Hase
,
R. J.
Duchovic
,
X.
Hu
,
A.
Komornicki
,
K. F.
Lim
,
D. H.
Lu
,
G. H.
Peslherbe
,
S. R.
Swamy
,
S. R.
Vande Linde
,
A.
Varandas
, et al,
QCPE Bull.
16
,
671
(
1996
).
53.
X.
Hu
,
W. L.
Hase
, and
T.
Pirraglia
,
J. Comput. Chem.
12
,
1014
(
1991
).
54.
M.
Valiev
,
E. J.
Bylaska
,
N.
Govind
,
K.
Kowalski
,
T. P.
Straatsma
,
H. J. J.
van Dam
,
D.
Wang
,
J.
Nieplocha
,
E.
Apra
,
T. L.
Windus
, and
W. A.
de Jong
,
Comput. Phys. Commun.
181
,
1477
(
2010
).
55.
M. W.
Schmidt
,
K. K.
Baldridge
,
J. A.
Boatz
,
S. T.
Elbert
,
M. S.
Gordon
,
J. H.
Jensen
,
S.
Koseki
,
N.
Matsunaga
,
K. A.
Nguyen
,
S.
Su
,
T. L.
Windus
,
M.
Dupuis
, and
J. A.
Montgomery
,
J. Comput. Chem.
14
,
1341
(
1993
).
56.
S.
Hammes-Schiffer
and
J. C.
Tully
,
J. Chem. Phys.
103
,
8528
(
1995
).
57.
Y.
Zhao
,
G.
Mil'nikov
, and
H.
Nakamura
,
J. Chem. Phys.
121
,
8854
(
2004
).
58.
J. I.
Steinfeld
,
J. S.
Francisco
, and
W. L.
Hase
,
Chemical Kinetics and Dynamics
, 2nd ed. (
Prentice Hall
,
Upper Saddle River, NJ
,
1999
), p.
316
.
59.
L.
Sun
,
K.
Park
,
K.
Song
,
D. W.
Setser
, and
W. L.
Hase
,
J. Chem. Phys.
124
,
64313
(
2006
).
60.
D. L.
Bunker
and
E. A.
Goring-Simpson
,
Faraday Discuss. Chem. Soc.
55
,
93
(
1973
).
61.
G. H.
Peslherbe
,
H.
Wang
, and
W. L.
Hase
,
Adv. Chem. Phys.
105
,
171
(
1999
).
62.
L.
Zhu
and
W. L.
Hase
,
Chem. Phys. Lett.
175
,
117
(
1990
).
63.
L.
Zhu
,
W.
Chen
,
W. L.
Hase
, and
E. W.
Kaiser
,
J. Phys. Chem.
97
,
311
(
1993
).
64.
L.
Zhu
and
W. L.
Hase
,
QCPE Bull.
14
,
644
(
1994
).
65.
W. L.
Hase
and
D. G.
Buckowski
,
J. Comput. Chem.
3
,
335
(
1982
).
66.
Y. J.
Cho
,
S. R.
Vande Linde
,
L.
Zhu
, and
W. L.
Hase
,
J. Chem. Phys.
96
,
8275
(
1992
).
67.
H.
Wang
,
G. H.
Peslherbe
, and
W. L.
Hase
,
J. Am. Chem. Soc.
116
,
9644
(
1994
).
68.
L.
Sun
,
W. L.
Hase
, and
K.
Song
,
J. Am. Chem. Soc.
123
,
5753
(
2001
).
69.
S. R.
Vande Linde
and
W. L.
Hase
,
J. Am. Chem. Soc.
111
,
2349
(
1989
).
70.
C.
Doubleday
 Jr.
,
K.
Bolton
, and
W. L.
Hase
,
J. Phys. Chem. A
102
,
3648
(
1998
).
71.
L.
Sun
,
K.
Song
, and
W. L.
Hase
,
Science
296
,
875
(
2002
).
72.
J. G.
López
,
G.
Vayner
,
U.
Lourderaj
,
S. V.
Addepalli
,
S.
Kato
,
W. A.
de Jong
,
T. L.
Windus
, and
W. L.
Hase
,
J. Am. Chem. Soc.
129
,
9976
(
2007
).
73.
A. J.
Lichtenberg
and
M. A.
Lieberman
,
Regular and Stochastic Motion
(
Springer
,
New York
,
1983
).
74.
P.
Pechukas
,
Ann. Rev. Phys. Chem.
32
,
159
(
1981
).
75.
M. J.
Davis
,
J. Chem. Phys.
83
,
1016
(
1985
).
76.
S. Y.
Grebenshchikov
,
R.
Schinke
, and
W. L.
Hase
,
Comprehensive Chemical Kinetics, Unimolecular Kinetics Part 1. The Reaction Step
, edited by
N. J. B.
Green
(
Elsevier Science
,
Amsterdam
,
2003
), Vol.
39
, pp.
105
242
.
77.
K.
Song
and
W. L.
Hase
,
J. Chem. Phys.
110
,
6198
(
1999
).
78.
W. L.
Hase
,
R. J.
Duchovic
,
K. N.
Swamy
, and
R. J.
Wolf
,
J. Chem. Phys.
80
,
714
(
1984
).
79.
R. A.
Marcus
,
W. L.
Hase
, and
K. N.
Swamy
,
J. Phys. Chem.
88
,
6717
(
1984
).
80.
S. R.
Vande Linde
and
W. L.
Hase
,
J. Chem. Phys.
93
,
7962
(
1990
).
81.
G. H.
Peslherbe
,
H.
Wang
, and
W. L.
Hase
,
J. Chem. Phys.
102
,
5626
(
1995
).
82.
D. L.
Bunker
and
W. L.
Hase
,
J. Chem. Phys.
59
,
4621
(
1973
).
83.
G.
Vayner
,
S. V.
Addepalli
,
K.
Song
, and
W. L.
Hase
,
J. Chem. Phys.
125
,
014317
(
2006
).
You do not currently have access to this content.