Many approximations have been developed to help deal with the O(N4) growth of the electron repulsion integral (ERI) tensor, where N is the number of one-electron basis functions used to represent the electronic wavefunction. Of these, the density fitting (DF) approximation is currently the most widely used despite the fact that it is often incapable of altering the underlying scaling of computational effort with respect to molecular size. We present a method for exploiting sparsity in three-center overlap integrals through tensor decomposition to obtain a low-rank approximation to density fitting (tensor hypercontraction density fitting or THC-DF). This new approximation reduces the 4th-order ERI tensor to a product of five matrices, simultaneously reducing the storage requirement as well as increasing the flexibility to regroup terms and reduce scaling behavior. As an example, we demonstrate such a scaling reduction for second- and third-order perturbation theory (MP2 and MP3), showing that both can be carried out in O(N4) operations. This should be compared to the usual scaling behavior of O(N5) and O(N6) for MP2 and MP3, respectively. The THC-DF technique can also be applied to other methods in electronic structure theory, such as coupled-cluster and configuration interaction, promising significant gains in computational efficiency and storage reduction.

1.
S.
Goedecker
,
Rev. Mod. Phys.
71
,
1085
(
1999
).
2.
G. E.
Scuseria
,
J. Phys. Chem. A
103
,
4782
(
1999
).
3.
E.
Schwegler
and
M.
Challacombe
,
J. Chem. Phys.
105
,
2726
(
1996
).
4.
C.-K.
Skylaris
,
P. D.
Haynes
,
A. A.
Mostofi
, and
M. C.
Payne
,
J. Chem. Phys.
122
,
084119
(
2005
).
5.
E.
Rudberg
,
E. H.
Rubensson
, and
P.
Salek
,
J. Chem. Theory Comput.
7
,
340
(
2011
).
6.
P. Y.
Ayala
and
G. E.
Scuseria
,
J. Chem. Phys.
110
,
3660
(
1999
).
7.
G. E.
Scuseria
and
P. Y.
Ayala
,
J. Chem. Phys.
111
,
8330
(
1999
).
8.
N.
Flocke
and
R. J.
Bartlett
,
J. Chem. Phys.
121
,
10935
(
2004
).
9.
J. E.
Subotnik
,
A.
Sodt
, and
M.
Head-Gordon
,
J. Chem. Phys.
125
,
074116
(
2006
).
10.
T. F.
Hughes
,
N.
Flocke
, and
R. J.
Bartlett
,
J. Phys. Chem. A
112
,
5994
(
2008
).
11.
H. J.
Werner
,
F. R.
Manby
, and
P. J.
Knowles
,
J. Chem. Phys.
118
,
8149
(
2003
).
12.
C. D.
Sherrill
,
J. Chem. Phys.
132
,
110902
(
2010
).
13.
Throughout this paper, we follow the usual practice of referring to multi-index array quantities with N indices as Nth-order tensors, irrespective of the transformation properties of these quantities. These are also called N-way arrays.
14.
J. L.
Whitten
,
J. Chem. Phys.
58
,
4496
(
1973
).
15.
B. I.
Dunlap
,
J. W. D.
Connolly
, and
J. R.
Sabin
,
Int. J. Quantum Chem.
S11
,
81
(
1977
).
16.
B. I.
Dunlap
,
J. W. D.
Connolly
, and
J. R.
Sabin
,
J. Chem. Phys.
71
,
3396
(
1979
).
17.
M.
Feyereisen
,
G.
Fitzgerald
, and
A.
Komornicki
,
Chem. Phys. Lett.
208
,
359
(
1993
).
18.
O.
Vahtras
,
J.
Almlof
, and
M. W.
Feyereisen
,
Chem. Phys. Lett.
213
,
514
(
1993
).
19.
A. P.
Rendell
and
T. J.
Lee
,
J. Chem. Phys.
101
,
400
(
1994
).
20.
F.
Weigend
,
Phys. Chem. Chem. Phys.
4
,
4285
(
2002
).
21.
A.
Sodt
,
J. E.
Subotnik
, and
M.
Head-Gordon
,
J. Chem. Phys.
125
,
194109
(
2006
).
22.
N. H. F.
Beebe
and
J.
Linderberg
,
Int. J. Quantum Chem.
12
,
683
(
1977
).
23.
I.
Roeggen
and
E.
Wisloff-Nilssen
,
Chem. Phys. Lett.
132
,
154
(
1986
).
24.
H.
Koch
,
A. S.
de Meras
, and
T. B.
Pedersen
,
J. Chem. Phys.
118
,
9481
(
2003
).
25.
F.
Aquilante
,
T. B.
Pedersen
, and
R.
Lindh
,
J. Chem. Phys.
126
,
194106
(
2007
).
26.
R. A.
Friesner
,
J. Chem. Phys.
85
,
1462
(
1986
).
27.
J. M.
Langlois
,
R. P.
Muller
,
T. R.
Coley
,
W. A.
Goddard
,
M. N.
Ringnalda
,
Y.
Won
, and
R. A.
Friesner
,
J. Chem. Phys.
92
,
7488
(
1990
).
28.
M. N.
Ringnalda
,
M.
Belhadj
, and
R. A.
Friesner
,
J. Chem. Phys.
93
,
3397
(
1990
).
29.
R. A.
Friesner
,
Ann. Rev. Phys. Chem.
42
,
341
(
1991
).
30.
T. J.
Martinez
and
E. A.
Carter
,
J. Chem. Phys.
102
,
7564
(
1995
).
31.
T. J.
Martinez
,
A.
Mehta
, and
E. A.
Carter
,
J. Chem. Phys.
97
,
1876
(
1992
).
32.
T. J.
Martinez
and
E. A.
Carter
,
J. Chem. Phys.
100
,
3631
(
1994
).
33.
C.
Ko
,
D. K.
Malick
,
D. A.
Braden
,
R. A.
Friesner
, and
T. J.
Martinez
,
J. Chem. Phys.
128
,
104103
(
2008
).
34.
T. J.
Martinez
and
E. A.
Carter
,
J. Chem. Phys.
98
,
7081
(
1993
).
35.
T. J.
Martinez
and
E. A.
Carter
, in
Modern Electronic Structure Theory
, edited by
D. R.
Yarkony
(
World Scientific
,
Singapore
,
1995
), Vol.
2
, pp.
1132
.
36.
R. A.
Friesner
,
J. Chem. Phys.
86
,
3522
(
1987
).
37.
E. G.
Hohenstein
,
R. M.
Parrish
,
C. D.
Sherrill
,
J. M.
Turney
, and
H. F.
Schaefer
,
J. Chem. Phys.
135
,
174107
(
2011
).
38.
R.
Polly
,
H. J.
Werner
,
F. R.
Manby
, and
P. J.
Knowles
,
Mol. Phys.
102
,
2311
(
2004
).
39.
Y. S.
Jung
,
R. C.
Lochan
,
A. D.
Dutoi
, and
M.
Head-Gordon
,
J. Chem. Phys.
121
,
9793
(
2004
).
40.
R. C.
Lochan
,
Y.
Jung
, and
M.
Head-Gordon
,
J. Phys. Chem. A
109
,
7598
(
2005
).
41.
G. E.
Scuseria
,
T. M.
Henderson
, and
D. C.
Sorensen
,
J. Chem. Phys.
129
,
231101
(
2008
).
42.
A.
Hesselmann
,
J. Chem. Phys.
128
,
144112
(
2008
).
43.
M.
Pitonak
and
A.
Hesselmann
,
J. Chem. Theory Comput.
6
,
168
(
2010
).
44.
H.
Sambe
and
R. H.
Felton
,
J. Chem. Phys.
62
,
1122
(
1975
).
45.
C. A.
White
,
B. G.
Johnson
,
P. M. W.
Gill
, and
M.
Head-Gordon
,
Chem. Phys. Lett.
230
,
8
(
1994
).
46.
C. A.
White
,
B. G.
Johnson
,
P. M. W.
Gill
, and
M.
Head-Gordon
,
Chem. Phys. Lett.
253
,
268
(
1996
).
47.
C. A.
White
,
B. G.
Johnson
,
P. M. W.
Gill
, and
M.
Head-Gordon
,
Chem. Phys. Lett.
248
,
482
(
1996
).
48.
F. L.
Hitchcock
,
J. Math. Phys.
6
,
164
(
1927
).
49.
F. L.
Hitchcock
,
J. Math. Phys.
7
,
39
(
1927
).
50.
L. R.
Tucker
,
Psychometrika
31
,
279
(
1966
).
51.
J. D.
Carroll
and
J. J.
Chang
,
Psychometrika
35
,
283
(
1970
).
52.
R. A.
Harshman
,
UCLA Working Papers in Phonetics
16
,
1
(
1970
).
53.
C. J.
Appellof
and
E. R.
Davidson
,
Anal. Chem.
53
,
2053
(
1981
).
54.
T. G.
Kolda
and
B. W.
Bader
,
SIAM Rev.
51
,
455
(
2009
).
55.
B. N.
Khoromskij
,
V.
Khoromskaia
,
S. R.
Chinnamsetty
, and
H. J.
Flad
,
J. Comput. Phys.
228
,
5749
(
2009
).
56.
F.
Bell
,
D. S.
Lambrecht
, and
M.
Head-Gordon
,
Mol. Phys.
108
,
2759
(
2010
).
57.
U.
Benedikt
,
A. A.
Auer
,
M.
Espig
, and
W.
Hackbusch
,
J. Chem. Phys.
134
,
054118
(
2011
).
58.
A. K.
Smilde
,
R.
Bro
, and
P.
Geladi
,
Multi-way analysis with applications in the chemical sciences
. (
Wiley
,
Chichester, West Sussex, England/Hoboken, NJ
,
2004
).
59.
M.
Haser
and
J.
Almlof
,
J. Chem. Phys.
96
,
489
(
1992
).
60.
J.
Almlof
,
Chem. Phys. Lett.
181
,
319
(
1991
).
61.
D.
Braess
and
W.
Hackbusch
,
IMA J. Numer. Anal.
25
,
685
(
2005
).
62.
A.
Takatsuka
,
S.
Ten-no
, and
W.
Hackbusch
,
J. Chem. Phys.
129
,
044112
(
2008
).
63.
J. M.
Turney
,
A. C.
Simmonett
,
R. M.
Parrish
,
E. G.
Hohenstein
,
F. A.
Evangelista
,
J. T.
Fermann
,
B. J.
Mintz
,
L. A.
Burns
,
J. J.
Wilke
,
M. L.
Abrams
,
N. J.
Russ
,
M. L.
Leninger
,
C. L.
Janssen
,
E. T.
Seidl
,
W. D.
Allen
,
H. F.
Schaefer
,
R. A.
King
,
E. F.
Valeev
,
C. D.
Sherrill
, and
T. D.
Crawford
,
WIREs Comp. Mol. Sci.
2
,
556
(
2012
).
64.
See supplementary material at http://dx.doi.org/10.1063/1.4732310 for geometries of alkanes and water clusters used in Figures 1 and 2, as well as detailed energetic data (MP2 and MP3 energies for THC-DF, DF, and standard approaches).
65.
T. H.
Dunning
,
J. Chem. Phys.
90
,
1007
(
1989
).
66.
F.
Weigend
,
A.
Kohn
, and
C.
Hattig
,
J. Chem. Phys.
116
,
3175
(
2002
).
67.
F.
Weigend
,
M.
Haser
,
H.
Patzelt
, and
R.
Ahlrichs
,
Chem. Phys. Lett.
294
,
143
(
1998
).
68.
C.
Moller
and
M. S.
Plesset
,
Phys. Rev.
46
,
0618
(
1934
).
69.
R. J.
Bartlett
and
D. M.
Silver
,
J. Chem. Phys.
62
,
3258
(
1975
).
70.
J. A.
Pople
,
J. S.
Binkley
, and
R.
Seeger
,
Int. J. Quantum Chem.
S10
,
1
(
1976
).

Supplementary Material

You do not currently have access to this content.