The displacement of perturbed water upon binding is believed to play a critical role in the thermodynamics of biomolecular recognition, but it is nontrivial to unambiguously define and answer questions about this process. We address this issue by introducing grid inhomogeneous solvation theory (GIST), which discretizes the equations of inhomogeneous solvation theory (IST) onto a three-dimensional grid situated in the region of interest around a solute molecule or complex. Snapshots from explicit solvent simulations are used to estimate localized solvation entropies, energies, and free energies associated with the grid boxes, or voxels, and properly summing these thermodynamic quantities over voxels yields information about hydration thermodynamics. GIST thus provides a smoothly varying representation of water properties as a function of position, rather than focusing on hydration sites where solvent is present at high density. It therefore accounts for full or partial displacement of water from sites that are highly occupied by water, as well as for partly occupied and water-depleted regions around the solute. GIST can also provide a well-defined estimate of the solvation free energy and therefore enables a rigorous end-states analysis of binding. For example, one may not only use a first GIST calculation to project the thermodynamic consequences of displacing water from the surface of a receptor by a ligand, but also account, in a second GIST calculation, for the thermodynamics of subsequent solvent reorganization around the bound complex. In the present study, a first GIST analysis of the molecular host cucurbit[7]uril is found to yield a rich picture of hydration structure and thermodynamics in and around this miniature receptor. One of the most striking results is the observation of a toroidal region of high water density at the center of the host's nonpolar cavity. Despite its high density, the water in this toroidal region is disfavored energetically and entropically, and hence may contribute to the known ability of this small receptor to bind guest molecules with unusually high affinities. Interestingly, the toroidal region of high water density persists even when all partial charges of the receptor are set to zero. Thus, localized regions of high solvent density can be generated in a binding site without strong, attractive solute-solvent interactions.

2.
R.
Mancera
,
Curr. Opin. Drug Discovery Dev.
10
,
275
280
(
2007
).
3.
S.
Wong
and
F.
Lightstone
,
Expert Opin. Drug Discovery
6
,
65
74
(
2011
).
4.
C. S.
Poornima
and
P. M.
Dean
,
J Comput.-Aided Mol. Des.
9
,
500
512
(
1995
).
5.
C. S.
Poornima
and
P. M.
Dean
,
J. Comput.-Aided Mol. Des.
9
,
513
520
(
1995
).
6.
C. S.
Poornima
and
P. M.
Dean
,
J. Comput.-Aided Mol. Des.
9
,
521
531
(
1995
).
7.
C.
Bissantz
,
B.
Kuhn
, and
M.
Stahl
,
J. Med. Chem.
53
,
5061
5084
(
2010
).
8.
L.
Wang
,
B. J.
Berne
, and
R. A.
Friesner
,
Proc. Natl. Acad. Sci. U.S.A.
108
,
1326
1330
(
2011
).
9.
T.
Young
,
R.
Abel
,
B.
Kim
,
B. J.
Berne
, and
R. A.
Friesner
,
Proc. Natl. Acad. Sci. U.S.A
104
,
808
813
(
2007
).
10.
B.
Honig
and
A.
Nicholls
,
Science
268
,
1144
1149
(
1995
).
11.
B.
Roux
and
T.
Simonson
,
Biophys. Chem.
78
,
1
20
(
1999
).
12.
E.
Gallicchio
,
K.
Paris
, and
R. M.
Levy
,
J. Chem. Theory Comput.
5
,
2544
2564
(
2009
).
13.
J.
Warwicker
and
H. C.
Watson
,
J. Mol. Biol.
157
,
671
679
(
1982
).
14.
M.
Gilson
and
B.
Honig
,
Proteins: Struct., Funct., Genet.
4
,
7
18
(
1988
).
15.
M. K.
Gilson
and
B.
Honig
,
J. Comput.-Aided. Mol. Des.
5
,
5
20
(
1991
).
16.
D.
Qiu
,
P.
Shenkin
,
F.
Hollinger
, and
W.
Still
,
J. Phys. Chem. A
101
,
3005
3014
(
1997
).
17.
B. N.
Dominy
and
C. L.
Brooks
 III
,
J. Phys. Chem. B
103
,
3765
3773
(
1999
).
18.
M.
Schaefer
and
M.
Karplus
,
J. Phys. Chem.
100
,
1578
1599
(
1996
).
19.
H. S.
Frank
and
M. W.
Evans
,
J. Chem. Phys.
13
,
507
(
1945
).
20.
W.
Kauzmann
,
Adv. Protein Chem.
14
,
1
63
(
1959
).
21.
D.
Pearlman
,
J. Med. Chem.
48
,
7796
7807
(
2005
).
22.
S.
Sridharan
,
A.
Nicholls
, and
K. A.
Sharp
,
J. Comput. Chem.
16
,
1038
1044
(
1995
).
23.
Freyberg
,
B. von
and
W.
Braun
,
J. Comput. Chem.
14
,
510
521
(
1993
).
24.
B.
Roux
,
M.
Nina
,
R.
Pomes
, and
J. C.
Smith
,
Biophys. J.
71
,
670
681
(
1996
).
25.
V.
Helms
and
R. C.
Wade
,
Biophys. J.
69
,
810
824
(
1995
).
26.
L. R.
Olano
and
S. W.
Rick
,
J. Am. Chem. Soc.
126
,
7991
8000
(
2004
).
27.
D.
Hamelberg
and
J. A.
McCammon
,
J. Am. Chem. Soc.
126
,
7683
7689
(
2004
).
28.
M.
Tashiro
and
A. A.
Stuchebrukhov
,
J. Phys. Chem. B
109
,
1015
1022
(
2005
).
29.
T.
Morita
and
K.
Hiroike
,
Prog. Theor. Phys.
25
,
537
578
(
1961
).
30.
T.
Lazaridis
,
J. Phys. Chem. B
102
,
3531
3541
(
1998
).
31.
T.
Lazaridis
,
J. Phys. Chem. B
102
,
3542
3550
(
1998
).
32.
Z.
Li
and
T.
Lazaridis
,
J. Am. Chem. Soc.
125
,
6636
6637
(
2003
).
33.
Z.
Li
and
T.
Lazaridis
,
J. Phys. Chem. B
110
,
1464
1475
(
2006
).
34.
Z.
Li
and
T.
Lazaridis
,
J. Phys. Chem. B
109
,
662
670
(
2005
).
35.
Z.
Li
and
T.
Lazaridis
,
Methods Mol. Biol.
819
,
393
404
(
2012
).
36.
R.
Abel
,
T.
Young
,
R.
Farid
,
B. J.
Berne
, and
R. A.
Friesner
,
J. Am. Chem. Soc
130
,
2817
2831
(
2008
).
37.
T.
Young
,
R.
Abel
,
R. A.
Friesner
, and
B. J.
Berne
, “
Methods of calculating differences of binding affinities between congeneric pairs of ligands by way of a displaced solvent functional
,” U.S. Patent 7,756,674 (July 13,
2010
).
38.
R.
Abel
,
N. K.
Salam
,
J.
Shelley
,
R.
Farid
,
R. A.
Friesner
, and
W.
Sherman
,
ChemMedChem
6
,
1049
1066
(
2011
).
39.
P. W.
Snyder
,
J.
Mecinović
,
D. T.
Moustakas
,
S. W.
Thomas
,
M.
Harder
,
E. T.
Mack
,
M. R.
Lockett
,
A.
Héroux
,
W.
Sherman
, and
G. M.
Whitesides
,
Proc. Natl. Acad. Sci. U.S.A
Vol.
108
, p.
17889
17894
(
2011
).
40.
L.
Chaiet
and
F. J.
Wolf
,
Arch. Biochem. Biophys.
106
,
1
5
(
1964
).
41.
T.
Young
,
L.
Hua
,
X.
Huang
,
R.
Abel
,
R.
Friesner
, and
B. J.
Berne
,
Proteins: Struct., Funct., Bioinf.
78
,
1856
1869
(
2010
).
42.
G.
Hummer
,
J. C.
Rasaiah
, and
J. P.
Noworyta
,
Nature (London)
414
,
188
190
(
2001
).
43.
J. C.
Rasaiah
,
S.
Garde
, and
G.
Hummer
,
Annu. Rev. Phys. Chem.
59
,
713
740
(
2008
).
44.
S.
Andreev
,
D.
Reichman
, and
G.
Hummer
,
J. Chem. Phys.
123
,
194502
(
2005
).
45.
J.
Kim
,
I.-S.
Jung
,
S.-Y.
Kim
,
E.
Lee
,
J.-K.
Kang
,
S.
Sakamoto
,
K.
Yamaguchi
, and
K.
Kim
,
J. Am. Chem. Soc.
122
,
540
541
(
2000
).
46.
M. V.
Rekharsky
,
T.
Mori
,
C.
Yang
,
Y. H.
Ko
,
N.
Selvapalam
,
H.
Kim
,
D.
Sobransingh
,
A. E.
Kaifer
,
S.
Liu
,
L.
Isaacs
,
W.
Chen
,
S.
Moghaddam
,
M. K.
Gilson
,
K.
Kim
, and
Y.
Inoue
,
Proc. Natl. Acad. Sci. U.S.A.
104
,
20737
20742
(
2007
).
47.
S.
Liu
,
C.
Ruspic
,
P.
Mukhopadhyay
,
S.
Chakrabarti
,
P. Y.
Zavalij
, and
L.
Isaacs
,
J. Am. Chem. Soc.
127
,
15959
15967
(
2005
).
48.
W. A.
Freeman
,
W. A.
Mock
, and
N. Y.
Shih
,
J. Am. Chem. Soc.
103
,
7367
7368
(
1981
).
49.
H.
Zhou
, and
M.
Gilson
,
Chem. Rev.
109
,
4092
4107
(
2009
).
50.
J.-P.
Hansen
and
I. R.
McDonald
,
Theory of Simple Liquids
(
Academic
,
London
,
1976
).
51.
D. C.
Wallace
,
J. Chem. Phys.
87
,
2282
(
1987
).
52.
A.
Baranyai
and
D. J.
Evans
,
Phys. Rev. A
40
,
3817
(
1989
).
53.
H. J.
Raveché
,
J. Chem. Phys.
55
,
2242
(
1971
).
54.
R. E.
Nettleton
and
M. S.
Green
,
J. Chem. Phys.
29
,
1365
(
1958
).
55.
Z.
Li
and
T.
Lazaridis
,
Phys. Chem. Chem. Phys.
9
,
573
(
2007
).
56.
T.
Lazaridis
and
M.
Karplus
,
J. Chem. Phys.
105
,
4294
(
1996
).
57.
See supplemental material at http://dx.doi.org/10.1063/1.4733951 for mathematical and computational details and additional results.
58.
H. J. C.
Berendsen
,
J. R.
Grigera
, and
T. P.
Straatsma
,
J. Phys. Chem.
91
,
6269
6271
(
1987
).
59.
W. C.
Swope
,
J. W.
Pitera
,
J. D.
Madura
,
T. J.
Dick
,
G. L.
Hura
,
T.
Head-Gordon
, and
H. W.
Horn
,
J. Chem. Phys.
120
,
9665
9678
(
2004
).
60.
R.
Abel
,
L.
Wang
,
R. A.
Friesner
, and
B. J.
Berne
,
J Chem. Theory Comput.
6
,
2924
2934
(
2010
).
61.
H.
Singh
,
S.
Misra
,
V.
Hnizdo
,
A.
Fedorowicz
, and
E.
Demchuk
,
Am. J. Math. Manage. Sci.
23
,
301
321
(
2003
).
62.
V.
Hnizdo
,
E.
Darian
,
A.
Fedorowicz
,
E.
Demchuk
,
S.
Li
, and
H.
Singh
,
J. Comput. Chem.
28
,
655
668
(
2007
).
63.
V.
Hnizdo
,
J.
Tan
,
B. J.
Killian
, and
M. K.
Gilson
,
J. Comput. Chem.
29
,
1605
1614
(
2008
).
64.
D. A.
Case
,
T. A.
Darden
,
T. E.
Cheatham
 III
,
C. L.
Simmerling
,
J.
Wang
,
R. E.
Duke
,
R.
Luo
,
R. C.
Walker
,
W.
Zhang
,
K. M.
Merz
,
B.
Roberts
,
B.
Wang
,
S.
Hayik
,
A.
Roitberg
,
G.
Seabra
,
I.
Kollosvary
,
K. F.
Wong
,
F.
Paesani
,
J.
Vanicek
,
J.
Liu
,
X.
Wu
,
S. R.
Brozell
,
T.
Steinbrecher
,
H.
Gohlke
,
Q.
Cai
,
X.
Ye
,
J.
Wang
,
M.-J.
Hsieh
,
G.
Cui
,
D. R.
Roe
,
D. R.
Mathews
,
M. G.
Seetin
,
C.
Sagui
,
T.
Babin
,
T.
Luchko
,
S.
Gusarov
,
A.
Kovalenko
, and
P. A.
Kollman
, AMBER 11, University of California, San Francisco,
2010
.
65.
W.
Humphrey
,
A.
Dalke
, and
K.
Schulten
,
J. Mol. Graphics
14
,
33
38
(
1996
).
66.
R.
Lumry
and
S.
Rajender
,
Biopolymers
9
,
1125
1227
(
1970
).
67.
M. R.
Eftink
,
A. C.
Anusiem
, and
R. L.
Biltonen
,
Biochemistry
22
,
3884
3896
(
1983
).
68.
Q.-X.
Guo
,
X.-Q.
Zheng
,
X.-Q.
Ruan
,
S. H.
Luo
, and
Y.-C. L.
YC
,
J. Inclusion Phenom. Mol.Recognit. Chem.
26
,
233
241
(
1996
).
69.
Y.
Inoue
and
T.
Wada
,
Adv. Supramol. Chem.
4
,
55
96
(
1997
).
70.
K.
Sharp
,
Protein Sci.
10
,
661
667
(
2001
).
71.
R.
Krug
,
W.
Hunter
, and
R.
Grieger
,
Nature (London)
261
,
566
567
(
1976
).
72.
J. D.
Weeks
,
D.
Chandler
, and
H. C.
Andersen
,
J. Chem. Phys.
54
,
5237
5247
(
1971
).
73.
S.
Moghaddam
,
Y.
Inoue
, and
M.
Gilson
,
J. Am. Chem. Soc.
131
,
4012
4021
(
2009
).
74.
A. T.
Hagler
and
J.
Moult
,
Nature
272
,
222
226
(
1978
).
75.
C. A.
Chang
,
W.
Chen
, and
M. K.
Gilson
,
Proc. Natl. Acad. Sci. U.S.A.
104
,
1534
1539
(
2007
).

Supplementary Material

You do not currently have access to this content.