The systems of open-ended carbon nanotubes (CNTs) immersed in methanol-water solution are studied by molecular dynamics simulations. For the (6,6) CNT, nearly pure methanol is found to preferentially occupy interior space of the CNT. Even when the mass fraction (MF) of methanol in bulk solution is as low as 1%, the methanol MF within the CNT is still more than 90%. For CNTs with larger diameters, the methanol concentrations within CNTs are also much higher than those outside CNTs. The methanol selectivity decreases with increasing CNT diameter, but not monotonically. From microscopic structural analyses, we find that the primary reason for the high selectivity of methanol by CNTs lies on high preference of methanol in the first solvation shell near the inner wall of CNT, which stems from a synergy effect of the van der Waals interaction between CNT and the methyl groups of methanol, together with the hydrogen bonding interaction among the liquid molecules. This synergy effect may be of general significance and extended to other systems, such as ethanol aqueous solution and methanol/ethanol mixture. The selective adsorption of methanol over water in CNTs may find applications in separation of water and methanol, detection of methanol, and preservation of methanol purity in fuel cells.

1.
S.
Iijima
,
Nature (London)
354
,
56
(
1991
).
2.
R.
Singh
,
D.
Pantarotto
,
L.
Lacerda
,
G.
Pastorin
,
C.
Klumpp
,
M.
Prato
,
A.
Binanco
, and
K.
Kostarelos
,
Proc. Natl. Acad. Sci. U.S.A.
103
,
3357
(
2006
).
3.
C.
Liu
,
Y. Y.
Fan
,
M.
Liu
,
H. T.
Cong
,
H. M.
Cheng
, and
M. S.
Dresselhaus
,
Science
286
,
1127
(
1999
).
4.
M. R.
LaBrosse
and
J. K.
Johnson
,
J. Phys. Chem. C
114
,
7602
(
2010
).
5.
B. J.
Hinds
,
N.
Chopra
,
T.
Rantell
,
R.
Andrews
,
V.
Gavalas
, and
L. G.
Bachas
,
Science
303
,
62
(
2004
).
6.
J.
Lee
and
N. R.
Aluru
,
Appl. Phys. Lett.
96
,
133108
(
2010
).
7.
O.
Sae-Khow
and
S.
Mitra
,
J. Phys. Chem. C
114
,
16351
(
2010
).
8.
F.
Fornasiero
,
H. G.
Park
,
J. K.
Holt
,
M.
Stadermann
,
C. P.
Grigoropoulos
,
A.
Noy
, and
O.
Bakajin
,
Proc. Natl. Acad. Sci. U.S.A.
105
,
17250
(
2008
).
9.
Y.
Gao
,
G. Q.
Sun
,
S. L.
Wang
, and
S.
Zhu
,
Energy
35
,
1455
(
2010
).
10.
G.
Girishkumar
,
T. D.
Hall
,
K.
Vinodgopal
, and
P. V.
Kamat
,
J. Phys. Chem. B
110
,
107
(
2006
).
11.
J.
Prabhuram
,
T. S.
Zhao
,
Z. K.
Tang
,
R.
Chen
, and
Z. X.
Liang
,
J. Phys. Chem. B
110
,
5245
(
2006
).
12.
K.
Lee
,
J.
Lee
,
S.
Kim
, and
B.
Ju
,
Carbon
49
,
787
(
2011
).
13.
A.
Salehi-Khojin
,
K. Y.
Lin
,
C. R.
Field
, and
R. I.
Masel
,
Science
329
,
1327
(
2010
).
14.
E. S.
Snow
,
F. K.
Perkins
,
E. J.
Houser
,
S. C.
Badescu
, and
T. L.
Reinecke
,
Science
307
,
1942
(
2005
).
15.
M
Penza
,
M.
Alvisi
,
R.
Rossi
,
E.
Serra
,
R.
Paolesse
,
A.
D’Amico
, and
C.
Di Natale
,
Nanotechnology
22
,
125502
(
2011
).
16.
J. S.
Babu
and
S. P.
Sathian
,
J. Chem. Phys.
134
,
194509
(
2011
).
17.
S.
Cambre
,
B.
Schoeters
,
S.
Luyckx
,
E.
Goovaerts
, and
W.
Wenseleers
,
Phys. Rev. Lett.
104
,
207401
(
2010
).
18.
H. J.
Wang
,
X. K.
Xi
,
A.
Kleinhammes
, and
Y.
Wu
,
Science
322
,
80
(
2008
).
19.
G.
Hummer
,
J. C.
Rasaiah
, and
J. P.
Noworyta
,
Nature (London)
414
,
188
(
2001
).
20.
T. A.
Pascal
,
W. A.
Goddarda
, and
Y.
Jung
,
Proc. Natl. Acad. Sci. U.S.A.
108
,
11794
(
2011
).
21.
J.
Köfinger
,
G.
Hummer
, and
C.
Dellago
,
Phys. Chem. Chem. Phys.
13
,
15403
(
2011
).
22.
H.
Kyakuno
,
K.
Matsuda
,
H.
Yahiro
,
Y.
Inami
,
T.
Fukuoka
,
Y.
Miyata
,
K.
Yanagi
,
Y.
Maniwa
,
H. i
Kataura
,
T.
Saito
,
M.
Yumura
, and
S.
Iijima
,
J. Chem. Phys.
134
,
244504
(
2011
).
23.
J.
Su
and
H.
Guo
,
ACS Nano
5
,
351
(
2011
).
24.
J.
Li
,
X.
Gong
,
H.
Lu
,
D.
Li
,
H.
Fang
, and
R.
Zhou
,
Proc. Natl. Acad. Sci. U.S.A.
104
,
3687
(
2007
).
25.
D. J.
Mann
and
M. D.
Halls
,
Phys. Rev. Lett.
90
,
195503
(
2003
).
26.
U.
Burghaus
,
D.
Bye
,
K.
Cosert
,
J.
Goering
,
A.
Guerard
,
E.
Kadossov
,
E.
Lee
,
Y.
Nadoyama
,
N.
Richter
,
E.
Schaefer
,
J.
Smith
,
D.
Ulness
, and
B.
Wymore
,
Chem. Phys. Lett.
442
,
344
(
2007
).
27.
G.
Garberoglio
,
J. Phys.: Condens. Matter
22
,
415104
(
2010
).
28.
J.
Goldsmith
and
B. J.
Hinds
,
J. Phys. Chem. C
115
,
19158
(
2011
).
29.
J. A.
Morrone
,
K. E.
Haslinger
, and
M. E.
Tuckerman
,
J. Phys. Chem. B
110
,
3712
(
2006
).
30.
Y.
Liu
,
S.
Consta
, and
W. A.
Goddard
,
J. Nanosci. Nanotechnol.
10
,
3834
(
2010
).
31.
J.
Zang
,
S.
Konduri
,
S.
Nair
, and
D. S.
Sholl
,
ACS Nano
3
,
1548
(
2009
).
32.
J.
Zheng
,
E. M.
Lennon
,
H.
Tsao
,
Y.
Sheng
, and
S.
Jiang
,
J. Chem. Phys.
122
,
214702
(
2005
).
33.
L.
Yang
and
Y. Q.
Gao
,
J. Am. Chem. Soc.
132
,
842
(
2010
).
34.
W. L.
Jorgensen
,
J.
Chandrasekhar
,
J. D.
Madura
,
R. W.
Impey
, and
M. L.
Klein
,
J. Chem. Phys.
79
,
926
(
1983
).
35.
M. W.
Mahoney
and
W. L.
Jorgensen
,
J. Chem. Phys.
112
,
8910
(
2000
).
36.
M.
Haughney
,
M.
Ferrario
, and
I. R.
McDonald
,
Mol. Phys.
58
,
849
(
1986
).
37.
W. L.
Jorgensen
,
J. M.
Briggs
, and
M. L.
Conteras
,
J. Phys. Chem.
94
,
1683
(
1990
).
38.
W. L.
Jorgensen
,
D. S.
Maxwell
, and
J.
Tirado-Rives
,
J. Am. Chem. Soc.
118
,
11225
(
1996
).
39.
D.
van der Spoel
,
E.
Lindahl
,
B.
Hess
,
G.
Groenhof
,
A. E.
Mark
, and
H. J. C.
Berendsen
,
J. Comput. Chem.
26
,
1701
(
2005
).
40.
E. J. W.
Wensink
,
A. C.
Hoffmann
,
P. J.
van Maaren
, and
D.
van der Spoel
,
J. Chem. Phys.
119
,
7308
(
2003
).
41.
H. J. C.
Berendsen
,
J. P. M.
Postma
,
W.
van Gunsteren
,
A.
DiNola
, and
J. R.
Haak
,
J. Chem. Phys.
81
,
3684
(
1984
).
42.
P.
Xiu
,
B.
Zhou
,
W. P.
Qi
,
H. J.
Lu
,
Y. S.
Tu
, and
H. P.
Fang
,
J. Am. Chem. Soc.
131
,
2840
(
2009
).
43.
R.
Hayes
,
G. G.
Warr
, and
R.
Atkin
,
Phys. Chem. Chem. Phys.
12
,
1709
(
2010
).
44.
H.
Li
and
X. C.
Zeng
,
ACS Nano
6
,
2401
(
2012
).
45.
T.
Koishi
,
K.
Yasuoka
,
X. C.
Zeng
, and
S.
Fujikawa
,
Faraday Discuss.
146
,
185
(
2010
).
46.
Z.
Cao
,
Y. X.
Peng
,
S.
Li
,
L.
Liu
, and
T. Y.
Yan
,
J. Phys. Chem. C
113
,
3096
(
2009
).
47.
A.
Alexiadis
and
S.
Kassinos
,
Chem. Rev.
108
,
5014
(
2008
).
48.
S.
Joseph
and
N. R.
Aluru
,
Nano Lett.
8
,
452
(
2008
).
49.
A. V.
Shevade
,
S. Y.
Jiang
, and
K. E.
Gubbins
,
J. Chem. Phys.
113
,
6933
(
2000
).
50.
S.-P.
Du
,
W.-H.
Zhao
, and
L.-F.
Yuan
,
Chin. J. Chem. Phys.
, accepted (
2012
).
51.
S.
Hwang
,
Q.
Shao
,
H.
Williams
,
C.
Hilty
, and
Y. Q.
Gao
,
J. Phys. Chem. B
115
,
6653
(
2011
).
You do not currently have access to this content.