Uptake of several atmospheric molecules on free ice nanoparticles was investigated. Typical examples were chosen: water, methane, NOx species (NO, NO2), hydrogen halides (HCl, HBr), and volatile organic compounds (CH3OH, CH3CH2OH). The cross sections for pickup of these molecules on ice nanoparticles (H2O)N with the mean size of

$\bar{N} \approx 260$
N¯260 (diameter ∼2.3 nm) were measured in a molecular beam experiment. These cross sections were determined from the cluster beam velocity decrease due to the momentum transfer during the pickup process. For water molecules molecular dynamics simulations were performed to learn the details of the pickup process. The experimental results for water are in good agreement with the simulations. The pickup cross sections of ice particles of several nanometers in diameter can be more than 3 times larger than the geometrical cross sections of these particles. This can have significant consequences in modelling of atmospheric ice nanoparticles, e.g., their growth.

1.
B. J.
Finlayson-Pitts
and
J. J. N.
Pitts
,
Chemistry of the Upper and Lower Atmosphere
(
Academic
,
San Diego
,
2000
).
2.
S.
Solomon
,
R. R.
Garcia
,
F. S.
Rowland
, and
D. J.
Wuebbles
,
Nature (London)
321
,
755
(
1986
).
3.
4.
A. J.
Prenni
and
M. A.
Tolbert
,
Acc. Chem. Res.
34
,
545
(
2001
).
5.
A.
Bogdan
,
M. J.
Molina
,
H.
Tenhu
,
E.
Mayer
, and
T.
Loerting
,
Nat. Chem.
2
,
197
(
2010
).
6.
H.
Vehkamäki
,
M. J.
McGrath
,
T.
Kurtén
,
J.
Julin
,
K. E. J.
Lehtinen
, and
M.
Kulmala
,
J. Chem. Phys.
136
,
094107
(
2012
).
7.
J.
Fedor
,
V.
Poterya
,
A.
Pysanenko
, and
M.
Fárník
,
J. Chem. Phys.
135
,
104305
(
2011
).
8.
J.
Cuvellier
,
P.
Meynadier
,
P.
de Pujo
,
O.
Sublemontier
,
J.-P.
Visticot
,
J.
Berlande
,
A.
Lallement
, and
J.-M.
Mestdagh
,
Z. Phys. D
21
,
265
(
1991
).
9.
M.
Macler
and
Y. K.
Bae
,
J. Phys. Chem. A
101
,
145
(
1997
).
11.
O. F.
Hagena
,
Z. Phys. D
4
,
291
(
1987
).
12.
O. F.
Hagena
,
Rev. Sci. Instrum.
63
,
2374
(
1992
).
13.
U.
Buck
and
R.
Krohne
,
J. Chem. Phys.
105
,
5408
(
1996
).
14.
C.
Bobbert
,
S.
Schütte
,
C.
Steinbach
, and
U.
Buck
,
Eur. Phys. J. D
19
,
183
(
2002
).
15.
R.
Baumfalk
,
U.
Buck
,
C.
Frischkorn
,
S. R.
Gandhi
, and
C.
Lauenstein
,
Ber. Bunsenges. Phys. Chem.
101
,
606
(
1997
).
16.
M.
Fárník
,
Molecular Dynamics in Free Clusters and Nanoparticles Studied in Molecular Beams
(
ICT Press
,
Prague
,
2011
).
17.
D. J.
Auerbach
in
Atomic and Molecular Beam Methods
, edited by
G.
Scoles
(
Oxford University Press
,
New York
, Oxford,
1988
), Vol.
I
, p.
362
.
18.
K.
Berling
,
R.
Belbing
,
K.
Kramer
,
H.
Pauly
,
C.
Schlier
, and
P.
Toschek
,
Z. Phys.
166
,
406
(
1962
).
19.
N. C.
Lang
,
H. V.
Lilenfeld
, and
J. L.
Kinsey
,
J. Chem. Phys.
55
,
3114
(
1971
).
20.
H.
Pauly
,
Atom, Molecule and Cluster Beams
(
Springer
,
Berlin
,
2000
).
21.
W. L.
Jorgensen
,
J.
Chandrasekhar
,
J. D.
Madura
,
R. W.
Impey
, and
M. L.
Klein
,
J. Chem. Phys.
79
,
926
(
1983
).
22.
S.
Zamith
,
P.
Feiden
,
P.
Labastie
, and
J.-M.
L'Hermite
,
Phys. Rev. Lett.
104
,
103401
(
2010
).
23.
S.
Zamith
,
P.
Feiden
,
P.
Labastie
, and
J.-M.
L'Hermite
,
J. Chem. Phys.
133
,
154305
(
2010
).
24.
D. J.
Wales
,
J. P. K.
Doye
,
A.
Dullweber
,
M. P.
Hodges
,
F. Y.
Naumkin
,
F.
Calvo
,
J.
Hernández-Rojas
, and
T. F.
Middleton
, The Cambridge Cluster Database, see http://www-wales.ch.cam.ac.uk/CCD.html.
25.
V.
Buch
,
S.
Bauerecker
,
J. P.
Devlin
,
U.
Buck
, and
J. K.
Kazimirski
,
Int. Rev. Phys. Chem.
23
,
375
(
2004
).
26.
J.
Brudermann
,
P.
Lohbrandt
,
U.
Buck
, and
V.
Buch
,
J. Phys. Chem.
112
,
11038
(
2000
).
27.
O. V.
Vasilev
and
H.
Reiss
,
J. Chem. Phys.
105
,
2946
(
1996
).
28.
O. V.
Vasilev
and
H.
Reiss
,
Phys. Rev. E
54
,
3950
(
1996
).
29.
J.
Vigué
,
P.
Labastie
, and
F.
Calvo
,
Eur. Phys. J. D
8
,
265
(
2000
).
30.
Z.
Sternovsky
,
M.
Horányi
, and
S.
Robertson
,
Phys. Rev. A
64
,
023203
(
2001
).
31.
M. K. V.-M.
Kerminen
,
Atmos. Res.
90
,
132
(
2008
).
You do not currently have access to this content.