The basis set convergence of weak interaction energies for dimers of noble gases helium through krypton is studied for six variants of the explicitly correlated, frozen geminal coupled-cluster singles, doubles, and noniterative triples [CCSD(T)-F12] approach: the CCSD(T)-F12a, CCSD(T)-F12b, and CCSD(T)(F12*) methods with scaled and unscaled triples. These dimers were chosen because CCSD(T) complete-basis-set (CBS) limit benchmarks are available for them to a particularly high precision. The dependence of interaction energies on the auxiliary basis sets has been investigated and it was found that the default resolution-of-identity sets cc-pVXZ/JKFIT are far from adequate in this case. Overall, employing the explicitly correlated approach clearly speeds up the basis set convergence of CCSD(T) interaction energies, however, quite surprisingly, the improvement is not as large as the one achieved by a simple addition of bond functions to the orbital basis set. Bond functions substantially improve the CCSD(T)-F12 interaction energies as well. For small and moderate bases with bond functions, the accuracy delivered by the CCSD(T)-F12 approach cannot be matched by conventional CCSD(T). However, the latter method in the largest available bases still delivers the CBS limit to a better precision than CCSD(T)-F12 in the largest bases available for that approach. Our calculations suggest that the primary reason for the limited accuracy of the large-basis CCSD(T)-F12 treatment are the approximations made at the CCSD-F12 level and the non-explicitly correlated treatment of triples. In contrast, the explicitly correlated second-order Møller-Plesset perturbation theory (MP2-F12) approach is able to pinpoint the complete-basis-set limit MP2 interaction energies of rare gas dimers to a better precision than conventional MP2. Finally, we report and analyze an unexpected failure of the CCSD(T)-F12 method to deliver the core-core and core-valence correlation corrections to interaction energies consistently and accurately.

1.
E. A.
Hylleraas
,
Z. Phys.
54
,
347
(
1929
).
2.
W.
Kołos
and
L.
Wolniewicz
,
J. Chem. Phys.
43
,
2429
(
1965
).
3.
C.
Schwartz
,
Int. J. Mod. Phys. E
15
,
877
(
2006
).
4.
H.
Nakatsuji
,
H.
Nakashima
,
Y.
Kurokawa
, and
A.
Ishikawa
,
Phys. Rev. Lett.
99
,
240402
(
2007
).
5.
W.
Cencek
and
K.
Szalewicz
,
Int. J. Quantum Chem.
108
,
2191
(
2008
).
6.
K.
Pachucki
,
Phys. Rev. A
82
,
032509
(
2010
).
7.
W.
Kutzelnigg
and
W.
Klopper
,
J. Chem. Phys.
94
,
1985
(
1991
).
8.
F. R.
Manby
,
J. Chem. Phys.
119
,
4607
(
2003
).
9.
K.
Szalewicz
and
B.
Jeziorski
,
Mol. Phys.
108
,
3091
(
2010
).
10.
A. J.
May
and
F. R.
Manby
,
J. Chem. Phys.
121
,
4479
(
2004
).
11.
W.
Klopper
,
F. R.
Manby
,
S.
Ten-no
, and
E. F.
Valeev
,
Int. Rev. Phys. Chem.
25
,
427
(
2006
).
12.
J.
Noga
,
W.
Kutzelnigg
, and
W.
Klopper
,
Chem. Phys. Lett.
199
,
497
(
1992
).
13.
T.
Shiozaki
,
M.
Kamiya
,
S.
Hirata
, and
E. F.
Valeev
,
J. Chem. Phys.
129
,
071101
(
2008
).
14.
A.
Köhn
,
G. W.
Richings
, and
D. P.
Tew
,
J. Chem. Phys.
129
,
201103
(
2008
).
15.
A.
Köhn
,
J. Chem. Phys.
130
,
131101
(
2009
).
16.
H.-J.
Werner
,
P. J.
Knowles
,
F. R.
Manby
, and
M.
Schütz
 et al, MOLPRO, version 2010.1, a package of ab initio programs (
2010
), see http://www.molpro.net.
17.
TURBOMOLE V6.3 2011, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989-2007, TURBOMOLE GmbH, since 2007; available fromhttp://www.turbomole.com.
18.
C.
Hättig
,
W.
Klopper
,
A.
Köhn
, and
D. P.
Tew
,
Chem. Rev.
112
,
4
(
2012
).
19.
L.
Kong
,
F. A.
Bischoff
, and
E. F.
Valeev
,
Chem. Rev.
112
,
75
(
2012
).
20.
H.
Fliegl
,
W.
Klopper
, and
C.
Hättig
,
J. Chem. Phys.
122
,
084107
(
2005
).
21.
D. P.
Tew
,
W.
Klopper
,
C.
Neiss
, and
C.
Hättig
,
Phys. Chem. Chem. Phys.
9
,
1921
(
2007
).
22.
T. B.
Adler
,
G.
Knizia
, and
H.-J.
Werner
,
J. Chem. Phys.
127
,
221106
(
2007
).
23.
C.
Hättig
,
D. P.
Tew
, and
A.
Köhn
,
J. Chem. Phys.
132
,
231102
(
2010
).
24.
G.
Knizia
,
T. B.
Adler
, and
H.
Werner
,
J. Chem. Phys.
130
,
054104
(
2009
).
25.
P.
Jurecka
,
J.
Sponer
,
J.
Cerny
, and
P.
Hobza
,
Phys. Chem. Chem. Phys.
8
,
1985
(
2006
).
26.
K.
Patkowski
,
R.
Podeszwa
, and
K.
Szalewicz
,
J. Phys. Chem. A
111
,
12822
(
2007
).
27.
T. H.
Dunning
 Jr.
,
J. Chem. Phys.
90
,
1007
(
1989
).
28.
R. A.
Kendall
,
T. H.
Dunning
 Jr.
, and
R. J.
Harrison
,
J. Chem. Phys.
96
,
6796
(
1992
).
29.
F.-M.
Tao
and
Y.-K.
Pan
,
J. Chem. Phys.
95
,
3582
(
1991
).
30.
R.
Burcl
,
G.
Chałasiński
,
R.
Bukowski
, and
M. M.
Szczȩśniak
,
J. Chem. Phys.
103
,
1498
(
1995
).
31.
H. L.
Williams
,
E. M.
Mas
,
K.
Szalewicz
, and
B.
Jeziorski
,
J. Chem. Phys.
103
,
7374
(
1995
).
32.
T.
van Mourik
,
R. J.
Vos
,
J. H.
van Lenthe
, and
F. B.
van Duijneveldt
,
Int. J. Quantum Chem.
63
,
805
(
1997
).
33.
M.
Jeziorska
,
R.
Bukowski
,
W.
Cencek
,
M.
Jaszuński
,
B.
Jeziorski
, and
K.
Szalewicz
,
Collect. Czech. Chem. Commun.
68
,
463
(
2003
).
34.
D. P.
Tew
and
W.
Klopper
,
J. Chem. Phys.
125
,
094302
(
2006
).
35.
O.
Marchetti
and
H.
Werner
,
Phys. Chem. Chem. Phys.
10
,
3400
(
2008
).
36.
D. P.
Tew
,
W.
Klopper
, and
C.
Hättig
,
Chem. Phys. Lett.
452
,
326
(
2008
).
37.
O.
Marchetti
and
H.
Werner
,
J. Phys. Chem. A
113
,
11580
(
2009
).
38.
J. R.
Lane
and
H. G.
Kjaergaard
,
J. Chem. Phys.
131
,
034307
(
2009
).
39.
K. M.
de Lange
and
J. R.
Lane
,
J. Chem. Phys.
134
,
034301
(
2011
).
40.
J. D.
McMahon
and
J. R.
Lane
,
J. Chem. Phys.
135
,
154309
(
2011
).
41.
W.
Skomorowski
,
F.
Pawłowski
,
T.
Korona
,
R.
Moszyński
,
P. S.
Żuchowski
, and
J. M.
Hutson
,
J. Chem. Phys.
134
,
114109
(
2011
).
42.
E. J.
Carrell
,
C. M.
Thorne
, and
G. S.
Tschumper
,
J. Chem. Phys.
136
,
014103
(
2012
).
43.
T.
Takatani
,
E. G.
Hohenstein
,
M.
Malagoli
,
M. S.
Marshall
, and
C. D.
Sherrill
,
J. Chem. Phys.
132
,
144104
(
2010
).
44.
R.
Podeszwa
,
K.
Patkowski
, and
K.
Szalewicz
,
Phys. Chem. Chem. Phys.
12
,
5974
(
2010
).
45.
K. A.
Peterson
,
T. B.
Adler
, and
H.-J.
Werner
,
J. Chem. Phys.
128
,
084102
(
2008
).
46.
F.
Weigend
,
A.
Köhn
, and
C.
Hättig
,
J. Chem. Phys.
116
,
3175
(
2002
).
47.
F.
Weigend
,
Phys. Chem. Chem. Phys.
4
,
4285
(
2002
).
48.
C.
Hättig
,
Phys. Chem. Chem. Phys.
7
,
59
(
2005
).
49.
K. E.
Yousaf
and
K. A.
Peterson
,
J. Chem. Phys.
129
,
184108
(
2008
).
50.
K. A.
Peterson
and
T. H.
Dunning
 Jr.
,
J. Chem. Phys.
117
,
10548
(
2002
).
51.
J. G.
Hill
,
S.
Mazumder
, and
K. A.
Peterson
,
J. Chem. Phys.
132
,
054108
(
2010
).
52.
K.
Patkowski
,
W.
Cencek
,
M.
Jeziorska
,
B.
Jeziorski
, and
K.
Szalewicz
,
J. Phys. Chem. A
111
,
7611
(
2007
).
53.
W.
Cencek
,
K.
Patkowski
, and
K.
Szalewicz
 et al (unpublished).
54.
R.
Hellmann
,
E.
Bich
, and
E.
Vogel
,
Mol. Phys.
106
,
133
(
2008
).
55.
B.
Jäger
,
R.
Hellmann
,
E.
Bich
, and
E.
Vogel
,
Mol. Phys.
107
,
2181
(
2009
).
56.
K.
Patkowski
and
K.
Szalewicz
,
J. Chem. Phys.
133
,
094304
(
2010
).
57.
P.
Slavíček
,
R.
Kalus
,
P.
Paška
,
I.
Odvárková
,
P.
Hobza
, and
A.
Malijevský
,
J. Chem. Phys.
119
,
2102
(
2003
).
58.
S. F.
Boys
and
F.
Bernardi
,
Mol. Phys.
19
,
553
(
1970
).
59.
F. B.
van Duijneveldt
,
J. G. C. M.
van Duijneveldt-van de Rijdt
, and
J. H.
van Lenthe
,
Chem. Rev.
94
,
1873
(
1994
).
60.
T. H.
Dunning
 Jr.
,
K. A.
Peterson
, and
A. K.
Wilson
,
J. Chem. Phys.
114
,
9244
(
2001
).
61.
E. F.
Valeev
,
Chem. Phys. Lett.
395
,
190
(
2004
).
62.
C.
Hättig
(unpublished).
63.
R.
Podeszwa
,
R.
Bukowski
, and
K.
Szalewicz
,
J. Phys. Chem. A
110
,
10345
(
2006
).
64.
K.
Pernal
,
R.
Podeszwa
,
K.
Patkowski
, and
K.
Szalewicz
,
Phys. Rev. Lett.
103
,
263201
(
2009
).
65.
A. J.
Misquitta
,
R.
Podeszwa
,
B.
Jeziorski
, and
K.
Szalewicz
,
J. Chem. Phys.
123
,
214103
(
2005
).
66.
A.
Hesselmann
,
G.
Jansen
, and
M.
Schütz
,
J. Chem. Phys.
122
,
014103
(
2005
).
67.
68.
H.-J.
Werner
,
T. B.
Adler
, and
F. R.
Manby
,
J. Chem. Phys.
126
,
164102
(
2007
).
69.
S.
Höfener
,
D. P.
Tew
,
W.
Klopper
, and
T.
Helgaker
,
Chem. Phys.
356
,
25
(
2009
).
70.
J. G.
Hill
,
K. A.
Peterson
,
G.
Knizia
, and
H.-J.
Werner
,
J. Chem. Phys.
131
,
194105
(
2009
).
71.
H.-J.
Werner
,
G.
Knizia
, and
F. R.
Manby
,
Mol. Phys.
109
,
407
(
2011
).
72.
A. J. C.
Varandas
,
J. Phys. Chem. A
114
,
8505
(
2010
).
73.
See supplementary material at http://dx.doi.org/10.1063/1.4734597 for additional tables and figures.
74.
E.
Papajak
,
H. R.
Leverentz
,
J.
Zheng
, and
D. G.
Truhlar
,
J. Chem. Theory Comput.
5
,
1197
(
2009
).
75.
E.
Papajak
and
D. G.
Truhlar
,
J. Chem. Theory Comput.
7
,
10
(
2011
).
76.
E.
Papajak
,
J.
Zheng
,
X.
Xu
,
H. R.
Leverentz
, and
D. G.
Truhlar
,
J. Chem. Theory Comput.
7
,
3027
(
2011
).
77.
R. N.
Hill
,
J. Chem. Phys.
83
,
1173
(
1985
).
78.
W.
Kutzelnigg
,
Theor. Chem. Acc.
68
,
445
(
1985
).
79.
W.
Kutzelnigg
and
J. D.
Morgan
 III
,
J. Chem. Phys.
96
,
4484
(
1992
).
80.
T.
Helgaker
,
W.
Klopper
,
H.
Koch
, and
J.
Noga
,
J. Chem. Phys.
106
,
9639
(
1997
).
81.
A.
Halkier
,
T.
Helgaker
,
P.
Jørgensen
,
W.
Klopper
,
H.
Koch
,
J.
Olsen
, and
A. K.
Wilson
,
Chem. Phys. Lett.
286
,
243
(
1998
).
82.
W.
Klopper
and
C. C. M.
Samson
,
J. Chem. Phys.
116
,
6397
(
2002
).
84.
D. W.
Schwenke
,
J. Chem. Phys.
122
,
014107
(
2005
).
85.
W.
Cencek
,
M.
Jeziorska
,
R.
Bukowski
,
M.
Jaszuński
,
B.
Jeziorski
, and
K.
Szalewicz
,
J. Phys. Chem. A
108
,
3211
(
2004
).
86.
B.
Jeziorski
,
H. J.
Monkhorst
,
K.
Szalewicz
, and
J. G.
Zabolitzky
,
J. Chem. Phys.
81
,
368
(
1984
).
87.
R.
Bukowski
,
B.
Jeziorski
, and
K.
Szalewicz
,
J. Chem. Phys.
110
,
4165
(
1999
).
88.
D. E.
Woon
and
T. H.
Dunning
 Jr.
,
J. Chem. Phys.
100
,
2975
(
1994
).
89.
T.
van Mourik
,
A. K.
Wilson
, and
T. H.
Dunning
 Jr.
,
Mol. Phys.
96
,
529
(
1999
).
90.
R. J.
Gdanitz
,
J. Chem. Phys.
113
,
5145
(
2000
).
91.
H.
Partridge
and
C. W.
Bauschlicher
,
Mol. Phys.
96
,
705
(
1999
).
92.
S. L.
Mielke
,
B. C.
Garrett
, and
K. A.
Peterson
,
J. Chem. Phys.
116
,
4142
(
2002
).
93.
M.
Jeziorska
,
W.
Cencek
,
K.
Patkowski
,
B.
Jeziorski
, and
K.
Szalewicz
,
Int. J. Quantum Chem.
108
,
2053
(
2008
).
94.
S. A.
Kucharski
and
R. J.
Bartlett
,
J. Chem. Phys.
108
,
9221
(
1998
).
95.
Y. J.
Bomble
,
J. F.
Stanton
,
M.
Kállay
, and
J.
Gauss
,
J. Chem. Phys.
123
,
054101
(
2005
).
96.
A. K.
Wilson
(unpublished).
97.
K.
Patkowski
,
G.
Murdachaew
,
C.-M.
Fou
, and
K.
Szalewicz
,
Mol. Phys.
103
,
2031
(
2005
).
98.
R.
Podeszwa
,
R.
Bukowski
, and
K.
Szalewicz
,
J. Chem. Theory Comput.
2
,
400
(
2006
).
99.
M. S.
Marshall
,
L. A.
Burns
, and
C. D.
Sherrill
,
J. Chem. Phys.
135
,
194102
(
2011
).
100.
E. F.
Valeev
,
Phys. Chem. Chem. Phys.
10
,
106
(
2008
).
101.
M.
Torheyden
and
E. F.
Valeev
,
Phys. Chem. Chem. Phys.
10
,
3410
(
2008
).
102.
E. F.
Valeev
and
T. D.
Crawford
,
J. Chem. Phys.
128
,
244113
(
2008
).

Supplementary Material

You do not currently have access to this content.