Combination bands that involve CH- or OH-stretch vibrations appear in the near-infrared (NIR) region (4000–10 000 cm−1). Because they arise from anharmonic coupling between the component fundamentals, detailed analysis of the frequency and intensity of NIR combination bands allows one to elucidate the mechanisms behind the vibrational coupling in the condensed phase in terms of mechanical and electrical anharmonicities. Nevertheless, little has been studied, in particular experimentally, on the origin of the combination band intensity. Here, we show that NIR electroabsorption (EA) spectroscopy, which directly probes the effects of an externally applied electric field on a combination band, can shed new light on anharmonic vibrational coupling through determination of the direction of the transition moment for the combination band. We studied the combination band of the CH-stretch (ν1) and CH-bend (ν4) modes of liquid chloroform. The electric-field induced absorbance change of the ν1 + ν4 combination band caused by reorientation of the chloroform molecule was measured at various χ angles, where χ is the angle between the direction of the applied electric field and the polarization of the incident IR light. We were able to detect an absorbance change as small as 5 × 10−8 for the combination band. Using the NIR EA spectra of the combination band together with those of the CH-stretch and bend fundamentals, the angle between the transition moment for the combination band and the permanent dipole moment was determined experimentally for the first time to be (79 ± 14)°. The present investigation indicates that the contribution of the CH-stretch mode to the mechanical anharmonicity is minor and that the CH-bend mode plays a dominant role in the mechanical part of the vibrational coupling between the two fundamentals. Furthermore, density functional theory calculations show that both the mechanical anharmonicity of the CH-bend mode and the electrical anharmonicity may contribute equally to the anharmonic coupling.

2.
R. M.
Stratt
and
M.
Maroncelli
,
J. Phys. Chem.
100
,
12981
(
1996
).
3.
A.
Morresi
,
L.
Mariani
,
M. R.
Distefano
, and
M. G.
Giorgini
,
J. Raman Spectrosc.
26
,
179
(
1995
).
4.
D. W.
Oxtoby
,
Annu. Rev. Phys. Chem.
32
,
77
(
1981
).
5.
A.
Barth
and
C.
Zscherp
,
Quart. Rev. Biophys.
35
,
369
(
2002
).
6.
Y. S.
Kim
and
R. M.
Hochstrasser
,
J. Phys. Chem. B
113
,
8231
(
2009
).
7.
R. R.
Ernst
,
G.
Bodenhausen
, and
A.
Wokaun
,
Principles of Nuclear Magnetic Resonances in One and Two Dimensions
(
Clarendon
,
Oxford
,
1987
).
8.
M.
Khalil
and
A.
Tokmakoff
,
Chem. Phys.
266
,
213
(
2001
).
9.
O.
Golonzka
,
M.
Khalil
,
N.
Demirdöven
, and
A.
Tokmakoff
,
Phys. Rev. Lett.
86
,
2154
(
2001
).
10.
M.
Khalil
,
N.
Demirdöven
, and
A.
Tokmakoff
,
J. Phys. Chem. A
107
,
5258
(
2003
).
11.
R. M.
Hochstrasser
,
Proc. Natl. Acad. Sci. U.S.A.
104
,
14190
(
2007
).
13.
Near-Infrared Spectroscopy: Principles, Instruments, Applications
, edited by
H. W.
Siesler
,
Y.
Ozaki
,
S.
Kawata
, and
H. M.
Heise
(
Wiley-VCH
,
Weinheim
,
2002
).
14.
K.
Iwata
and
H.
Hamaguchi
,
Appl. Spectrosc.
44
,
1431
(
1990
).
15.
T.
Yuzawa
,
C.
Kato
,
M. W.
George
, and
H.
Hamaguchi
,
Appl. Spectrosc.
48
,
684
(
1994
).
16.
S.
Yabumoto
,
S.
Shigeto
,
Y.-P.
Lee
, and
H.
Hamaguchi
,
Angew. Chem., Int. Ed.
49
,
9201
(
2010
).
17.
H.
Hiramatsu
and
H.
Hamaguchi
,
Appl. Spectrosc.
58
,
355
(
2004
).
18.
W.-C.
Wang
and
S.
Shigeto
,
J. Phys. Chem. A
115
,
4448
(
2011
).
19.
T.
Shimanouchi
,
Tables of Molecular Vibrational Frequencies. Consolidated Volume I
(
U.S. Department of Commerce, NSRDS-NBS 39
,
Washington, D.C.
,
1972
).
20.
H. J.
Bakker
,
P. C. M.
Planken
,
L.
Kuipers
, and
A.
Lagendijk
,
J. Chem. Phys.
94
,
1730
(
1991
).
21.
H.
Graener
,
R.
Zürl
, and
M.
Hofmann
,
J. Phys. Chem. B
101
,
1745
(
1997
).
22.
E. L.
Sibert
 III
and
R.
Rey
,
J. Chem. Phys.
116
,
237
(
2002
).
23.
A.
Tokmakoff
,
M. J.
Lang
,
D. S.
Larsen
,
G. R.
Fleming
,
V.
Chernyak
, and
S.
Mukamel
,
Phys. Rev. Lett.
79
,
2702
(
1997
).
24.
K.
Tominaga
and
K.
Yoshihara
,
Phys. Rev. A
55
,
831
(
1997
).
25.
K.
Tominaga
and
K.
Yoshihara
,
J. Phys. Chem. A
102
,
4222
(
1998
).
26.
K.
Okumura
and
Y.
Tanimura
,
Chem. Phys. Lett.
278
,
175
(
1997
).
27.
S.
Hahn
,
K.
Park
, and
M.
Cho
,
J. Chem. Phys.
111
,
4121
(
1999
).
28.
K.
Park
,
M.
Cho
,
S.
Hahn
, and
D.
Kim
,
J. Chem. Phys.
111
,
4131
(
1999
).
29.
P.
Kukura
,
R.
Frontiera
, and
R. A.
Mathies
,
Phys. Rev. Lett.
96
,
238303
(
2006
).
30.
K.
Ishii
,
S.
Takeuchi
, and
T.
Tahara
,
J. Chem. Phys.
131
,
044512
(
2009
).
31.
G.
Herzberg
,
Molecular Spectra and Molecular Structure: II. Infrared and Raman Spectra of Polyatomic Molecules
(
Van Nostrand
,
New York
,
1945
).
32.
W.
Liptay
,
Angew. Chem., Int. Ed.
8
,
177
(
1969
).
33.
S.
Shigeto
,
H.
Hiramatsu
, and
H.
Hamaguchi
,
J. Phys. Chem. A
110
,
3738
(
2006
).
34.
F.
Dong
and
R. E.
Miller
,
Science
298
,
1227
(
2002
).
35.
G. U.
Bublitz
and
S. G.
Boxer
,
Annu. Rev. Phys. Chem.
48
,
213
(
1997
).
36.
S. A.
Locknar
and
L. A.
Peteanu
,
J. Phys. Chem. B
102
,
4240
(
1998
).
37.
E.
Jalviste
and
N.
Ohta
,
J. Photochem. Photobiol. C
8
,
30
(
2007
).
38.
M.
Ponder
and
R.
Mathies
,
J. Phys. Chem.
87
,
5090
(
1983
).
39.
S. A.
Andrews
and
S. G.
Boxer
,
J. Phys. Chem. A
106
,
469
(
2002
).
40.
J. R.
Reimers
,
J.
Zeng
, and
N. S.
Hush
,
J. Phys. Chem.
100
,
1498
(
1996
).
41.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
42.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
43.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
 et al., GAUSSIAN 09, Revision A.02, Gaussian, Inc., Wallingford, CT,
2009
.
44.
S. H.
Brewer
and
S.
Franzen
,
J. Chem. Phys.
119
,
851
(
2003
).
45.
S. S.
Andrews
and
S. G.
Boxer
,
J. Phys. Chem. A
104
,
11853
(
2000
).
46.
T.
Nakabayashi
and
N.
Ohta
,
Chem. Lett.
34
,
1194
(
2005
).
47.
E. S.
Park
and
S. G.
Boxer
,
J. Phys. Chem. B
106
,
5800
(
2002
).
48.
J. R.
Reimers
and
N. S.
Hush
,
J. Phys. Chem. A
103
,
10580
(
1999
).
49.
P.
Geerlings
,
D.
Berckmans
, and
H. P.
Figeys
,
J. Mol. Struct.
57
,
283
(
1979
).
50.
E.
Marechal
and
S.
Bratos
,
J. Chem. Phys.
68
,
1825
(
1978
).
51.
S. M.
Melikova
,
A. J.
Inzebejkin
,
D. N.
Shchepkin
, and
A.
koll
,
J. Mol. Struct.
552
,
273
(
2000
).
52.
R.
Guo
,
F.
Fournier
,
P. M.
Donaldson
,
E. M.
Gardner
,
I. R.
Gould
, and
D. R.
Klug
,
Phys. Chem. Chem. Phys.
11
,
8417
(
2009
).
53.
K.
Kwak
,
S.
Cha
,
M.
Cho
, and
J. C.
Wright
,
J. Chem. Phys.
117
,
5675
(
2002
).
You do not currently have access to this content.